Date/heure
10 mars 2025
14:00 - 15:00
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Laurine Weibel
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
En 1913, De Franchis a démontré que le nombre d’applications holomorphes surjectives de $X$ vers $Y$ est fini lorsque $X$ et $Y$ sont des surfaces de Riemann compactes et que $Y$ est de genre au moins 2.
Ce résultat a été généralisé en dimension supérieure par Noguchi pour certaines variétés hyperboliques et Campana a établi un énoncé analogue pour les courbes orbifoldes hyperboliques.
Dans cet exposé, nous introduirons différentes notions liées à l’hyperbolicité et aux orbifoldes, afin de comprendre certaines propriétés de finitude pour les applications holomorphes entre variétés hyperboliques ou entre paires orbifoldes hyperboliques, généralisant ainsi le théorème de De Franchis.