Date/heure
12 septembre 2022
14:00 - 16:00
Oratrice ou orateur
Stéphane Druel
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
Un théorème de décomposition pour les variétés de Poisson holomorphes
Weinstein a montré que toute variété de Poisson holomorphe est localement le produit d’une variété symplectique et d’une variété de Poisson dont le rang est nul au point considéré. En particulier, toute variété de Poisson possède un feuilletage naturel dont les feuilles sont des variétés symplectiques. Dans un travail en collaboration avec Jorge Pereira, Brent Pym et Frédéric Touzet, nous montrons que si une variété de Poisson compacte kählérienne X a une feuille compacte L dont le groupe fondamental est fini alors, à un revêtement étale fini près, X est le produit du revêtement universel de L et d’une autre variété de Poisson.