Date/heure
20 mars 2023
14:00 - 15:00
Oratrice ou orateur
Ilia Smilga
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
titre : *Action du groupe de Weyl sur l’espace des vecteurs MA-invariants*
résumé : Soit G un groupe de Lie réel semisimple, A son
« sous-espace de Cartan » ou « tore déployé maximal » (sous-algèbre
abélienne diagonalisable sur les réels maximale). On peut alors
définir son groupe de Weyl restreint W, comme le quotient du
normalisateur de A par son centralisateur. (Je donnerai des
exemples concrets).
Considérons maintenant une représentation irréductible de dimension
finie rho de ce groupe (agissant sur un espace V). Alors W a une
action bien définie sur le sous-espace V^L formé par les vecteurs de
V fixés par le normalisateur de A, appelé MA ou L.
Dans le groupe de Weyl (restreint), un rôle spécial est joué par le « mot
le plus long » w_0, qui envoie les racines (restreintes) positives sur
les racines (restreintes) négatives. Nous nous posons la question
suivante : dans quels cas ce w_0 a-t-il une action non triviale sur
V^L ? (Cette question est motivée par une certaine question en
dynamique des groupes de transformations affines.)
Cette question se décompose naturellement en deux parties : quelles sont
les représentations pour lesquelles, déjà, V^L est non trivial ? et
puis, parmi celles-ci, quelles sont celles où, en plus, w_0 agit
non-trivialement sur V^L ? Dans le cas particulier où G est déployé,
la première question est très facile, et nous avons trouvé la réponse à
la deuxième, qui est : « presque toutes ». Dans le cas général, j’ai
récemment obtenu la réponse à la première question, et pour la deuxième
question je dispose d’une conjecture. Je vais présenter tous ces travaux.