Singularités de la variété des caractères en une représentation irréductible.

Date/heure
26 janvier 2017
14:00 - 15:00

Oratrice ou orateur
Clément Guérin

Catégorie d'évènement
Séminaire des doctorants


Résumé

La variété des caractères d’un groupe de type fini vers un groupe algébrique complexe est (à peu de choses près) l’ensemble des classes de conjugaisons de représentations de ce groupe de type fini vers le groupe algébrique complexe.
Cette variété peut avoir des singularités algébriques. Nous allons nous intéresser au cas où le groupe de type fini est un groupe libre ou un groupe de surface et le groupe algébrique complexe est PSL(p,C) avec p premier.
En particulier, nous montrerons que la classe de conjugaison d’une représentation irréductible dont le centralisateur est non-trivial est une singularité algébrique de la variété des caractères. Si le temps le permet, nous verrons des contre-exemples à cette propriété si l’on change le groupe de type fini.