Stabilité du modèle d’appariement aléatoire sur des graphes

Date/heure
30 mars 2017
09:15 - 10:15

Oratrice ou orateur
Pascal Moyal

Catégorie d'évènement
Séminaire Probabilités et Statistique


Résumé

Nous considérons un modèle d’appariement d’entités générées aléatoirement, pour lequel les paires possibles sont fixées par un graphe simple de compatibilité. Ce modèle, qui a des applications naturelles à  l’économie participative, la gestion des banques de sang et d’organes et aux chaînes de production, généralise celui d’appariement biparti de Kaldentey, Kaplan et Weiss à  un graphe non-nécessairement biparti. La stabilité du système est étudiée suivant les propriétés structurelles du graphes de compatibilité. Nous proposons une classe de graphes pour lesquels la zone de stabilité ne dépend pas de la politique d’appariement (i.e. l’ordre de priorité en cas de choix multiple), et une réciproque partielle. En outre, nous montrons sous certaines conditions l’existence d’une forme produit particulière pour sa représentation Markovienne sous la politique « Premier entré, premier marié. » Des connexions de ces résultats avec la théorie classique d’appariement dans les graphes (et dans les grands graphes aléatoires) seront aussi proposées. (travaux joints avec Jean Mairesse, Ana Busic et Ohad Perry).