Sur la cohomologie en degré 2 des groupes kähleriens.

Date/heure
11 juillet 2023
16:00 - 16:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Julien Maubon

Catégorie d'évènement
Séminaire Géométrie


Résumé
Je vais parler d’un vieux travail en collaboration avec Bruno Klingler et Vincent Koziarz sur une question/conjecture de Carlson et Toledo. Un groupe est dit kählerien s’il est isomorphe au groupe fondamental d’une variété kählerienne compacte. On connaît un certain nombre de restrictions sur les groupes kähleriens, souvent issues de la théorie de Hodge, par exemple que leur premier nombre de Betti doit être pair. La conjecture de Carlson et Toledo affirme que tout groupe kählerien infini a de la cohomologie en degré 2. J’expliquerai une stratégie possible vers cette conjecture, initiée par A. Reznikov et que nous avions poursuivie avec B. Klingler et V. Koziarz, qui est basée sur l’étude de certaines variations de structures de Hodge et des applications et domaines de périodes associés. Cette stratégie n’a pour l’instant donné que des résultats très partiels, mais j’aimerais comprendre si on peut pousser les choses un peu plus loin.