Sur la géométrie des oeufs de branchiopodes

Date/heure
28 novembre 2017
10:45 - 11:45

Oratrice ou orateur
Alexandre Delyon

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

On veut expliquer la forme des oeufs d’eulimnadia, petit animal vivant dans des mares éphémères, en utilisant les outils de l’optimisation de forme. En effet, la théorie de l’évolution laisse penser que la forme des objets que l’on retrouve dans la nature résulte d’un processus d’optimisation, c’est à  dire que leur forme est telle que l’objet en question est le plus à  même de résister aux contraintes qui s’exercent sur lui. On propose un critère naturel optimisé par la forme de l’oeuf, que l’on modélise mathématiquement par un problème de minimisation de fonctionnelle de forme s’écrivant comme combinaison convexe du rayon intérieur, du diamètre et de la densité, notion que l’on définira. On présente le travail réalisé jusqu’à  présent.