Sur les opérateurs différentiels symétriques

Date/heure
21 octobre 2019
15:30 - 16:30

Oratrice ou orateur
Daniel Barlet

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Let s1,dots,sk be the elementary symmetric functions of the complex variables x1,dots,xk.
We say that FinC[s1,dots,sk] is a {trace function} if their exists finC[z] such that
F(s1,dots,sk]=sumj=1kf(xj) for all sinCk.
We give an explicit finite family of second order differential operators in the Weyl algebra
W2:=C[s1,dots,sk]langlefracpartialpartials1,dots,fracpartialpartialskrangle
which generates the left ideal in W2 of partial differential operators killing all trace functions.
The proof uses a theorem for symmetric differential operators analogous
to the usual symmetric functions theorem and the corresponding map for symbols. As a corollary, we obtain for each integer k
a regular holonomic system which is a quotient of W2 by an explicit left ideal whose local solutions are given by linear
combinations of the branches of the multivalued root of the universal equation of degree k:
zk+sumh=1k(1)h.sh.zkh=0.