Sur l’intégration des algèbres de Lie $p$-nil en caractéristique $p >0$

Date/heure
12 avril 2021
15:30 - 16:30

Lieu
Salle de géométrie virtuelle

Oratrice ou orateur
Marion Jeannin

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Dans cet exposé je présente certaines méthodes développées au cours de ma thèse. Le problème est le suivant : soient $k$ un corps (algébriquement clos) et $G$ un $k$-groupe réductif. Notons $\mathfrak{g}$ son algèbre de Lie. Si $k$ est de caractéristique nulle, l’existence de l’exponentielle permet d’intégrer toute sous-algèbre de Lie nilpotente $\mathfrak{u}\subseteq\mathfrak{g}$ en un sous-groupe unipotent lisse et connexe U⊆G tel que $Lie(U)$= $\mathfrak{u}$. Si maintenant $k$ est de caractéristique $p >0$ l’exponentielle d’éléments nilpotents de $\mathfrak{g}$ n’est plus toujours bien définie et il n’est plus a priori possible d’intégrer une sous-algèbre de Lie nilpotente arbitraire de $\mathfrak{g}$.Nous nous intéresserons ici à l’intégration des $p$-sous-algèbres restreintes $p$-nil de $\mathfrak{g}$ (à savoir les bons analogues en caractéristique $p>0$ des sous-algèbres de Lie nilpotentes de $\mathfrak{g}$). Après avoir présenté les travaux de J-P. Serre et ceux, plus récents, de P. Deligne, V. Balaji et A. J.Parameswaran qui assurent une intégration systématique de tels objets pour une borne “raisonnable » sur $\mathfrak{p}$, nous discuterons le cas plus complexe des petites caractéristiques. J’expliquerai notamment comment ma généralisation d’un théorème de P. Deligne permet l’intégration decertaines sous-algèbres de Lie $p$-nil (maximales pour un certain critère) de $\mathfrak{g}$.