Date/heure
6 décembre 2022
10:45 - 11:45
Lieu
Salle Döblin
Oratrice ou orateur
Pierre Amenoagbadji
Catégorie d'évènement Séminaire Équations aux Derivées Partielles et Applications (Nancy)
Résumé
Résumé: Un milieu quasi-périodique est un milieu ordonné sans être périodique. Un exemple assez connu depuis le prix Nobel de Chimie 2011 est le quasi-cristal. La notion de quasi-périodicité est très bien définie dans la littérature mathématique. Pour donner une idée, une fonction quasi-périodique 1D est la trace suivant une droite donnée d’une fonction périodique de plusieurs variables. Les EDP à coefficients quasi-périodiques ont fait l’objet d’études théoriques dans le contexte de l’homogénéisation, mais il semble qu’il y ait eu beaucoup moins de travaux en dehors de ce contexte, et encore moins sur la résolution numérique de ces équations.
L’objectif de ce travail est de développer des méthodes numériques originales pour résoudre l’équation des ondes harmoniques en milieux quasi-périodiques, dans l’esprit des méthodes précédemment développées pour des milieux périodiques. L’idée est d’utiliser le fait que l’étude d’une EDP elliptique avec des coefficients quasi-périodiques se ramène à l’étude d’une EDP augmentée non-elliptique, posée en dimension supérieure, mais dont les coefficients sont périodiques. Cette approche, dite de relèvement, permet de résoudre l’EDP périodique avec des outils adaptés. Cependant, le caractère non-elliptique rend l’analyse mathématique et numérique de la méthode délicate.
Dans cet exposé, je présenterai dans un premier temps la méthode de relèvement sur un problème 1D quasi-périodique. Je discuterai ensuite de l’extension de cette méthode à un problème de transmission entre un milieu périodique et un milieu constant, lorsque l’interface ne coupe pas le milieu périodique dans une direction de périodicité. L’efficacité de l’approche sera illustrée par des résultats numériques.