Théorème de Torelli global pour les orbifoldes symplectiques irréductibles

Date/heure
14 janvier 2019
15:30 - 16:30

Oratrice ou orateur
Grégoire Menet

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Depuis le théorème de décomposition de Bogomolov, les variétés hyperkählériennes jouent un rôle important en géométrie algébrique, elles peuvent être considérées comme des briques élémentaires dans le projet de classification des variétés kählériennes. En 2011, Verbitsky démontre un outil fondamental à  l’origine de nombreux développements : le théorème de Torelli global. L’idée est de pouvoir retrouver la géométrie de la variété à  partir de la structure de Hodge de son second groupe de cohomologie comme dans le cas des surfaces K3. Une orbifolde est une généralisation de variété constituée par le recollement de quotients d’ouverts de C^n par des groupes finis. Dans cet exposé nous verrons, dans les grandes lignes, comment le théorème de Torelli global peut être étendu au cas des orbifoldes symplectiques irréductibles.