Date/heure
21 mars 2024
14:30 - 15:30
Lieu
Salle Döblin
Oratrice ou orateur
Cynthia Bortolotto (ETH Zurich)
Catégorie d'évènement Séminaire de Théorie des Nombres de Nancy-Metz
Résumé
In 1964, Hooley proved that for an irreducible polynomial $p$ in $\mathbb{Z}[x]$, the ratios $v/n$ for $v$ roots of the polynomial $p$ modulo $n$, are equidistributed modulo $1$. We prove joint equidistribution of these roots of polynomial congruences and polynomial values. As part of the proof, we generalize a result of Montgomery and Vaughan regarding exponential sums with multiplicative coefficients to the setting of Weyl sums.