Sur la diffraction dans une plaque de Kirchhoff-Love infinie : problème direct et problème inverse

Date/heure
15 juin 2021
10:45 - 11:45

Oratrice ou orateur
Laurent Bourgeois (ENSTA)

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé
Cette présentation concernera des problèmes directs et inverses de diffraction dans une plaque de Kirchhoff-Love infinie, l’objet diffractant étant formé par un obstacle pénétrable de forme quelconque.
Quatre types de conditions aux limites sont considérées sur le bord de l’obstacle : plaque encastrée, simplement supportée, portée par un roller et libre.
Concernant le problème direct, nous prouvons le caractère bien posé dans ces quatre situations, pour tout nombre d’onde dans les trois premières, sauf pour un nombre discret de nombres d’onde dans la dernière, qui est la plus difficile (le cas libre correspond à un trou dans la plaque).
Nous aborderons ensuite le problème inverse de reconstruction de l’obstacle à partir de mesures en champ proche. A cette fin, nous adaptons la Linear Sampling Method de Colton-Kirsch pour imager les obstacles, et montrerons des résultats numériques pour illustrer la faisabilité de cette approche.

La partie « problème direct » est un travail en collaboration avec Christophe Hazard, la partie « problème inverse » une collaboration avec Arnaud Recoquillay.