The twisted cotangent bundle of a Hyperkähler manifold

Date/heure
8 novembre 2021
14:00 - 15:00

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Fabrizio Anella

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Let $X$ be a complex projective Hyperkähler manifold. By a recent result of Höring and Peternell, the cotangent bundle of $X$ is not pseudoeffective. One way to measure this negativity more precisely is to give sufficient conditions on an ample line bundle $A$ such that the twist $\Omega_X \otimes A$ is pseudoeffective. I will give a sufficient condition that depends only on the deformation’s type of $X$. Then I will discuss when this sufficient condition is also necessary. At the end I’ll briefly present some recent progress on the case of degree two K3 surfaces. This is a joint work with Andreas Höring.