Date/heure
1 avril 2021
15:30 - 16:30
Lieu
Salle de séminaire de Théorie des Nombres virtuelle
Oratrice ou orateur
Sarah Peluse (IAS/Princeton)
Catégorie d'évènement Séminaire de Théorie des Nombres de Nancy-Metz
Résumé
In 2017, Miller conjectured, based on computational evidence, that for any fixed prime $p$ the density of entries in the character table of $S_n$ that are divisible by $p$ goes to $1$ as $n$ goes to infinity. I’ll describe a proof of this conjecture, which is joint work with K. Soundararajan. I will also discuss the (still open) problem of determining the asymptotic density of zeros in the character table of $S_n$, where it is not even clear from computational data what one should expect.