Modular zeros in the character table of the symmetric group

Date/heure
1 avril 2021
15:30 - 16:30

Lieu
Salle de séminaire de Théorie des Nombres virtuelle

Oratrice ou orateur
Sarah Peluse (IAS/Princeton)

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé
In 2017, Miller conjectured, based on computational evidence, that for any fixed prime p the density of entries in the character table of Sn that are divisible by p goes to 1 as n goes to infinity. I’ll describe a proof of this conjecture, which is joint work with K. Soundararajan. I will also discuss the (still open) problem of determining the asymptotic density of zeros in the character table of Sn, where it is not even clear from computational data what one should expect.