Problèmes de Schrödinger dynamiques: Gamma-convergence et convexité

Date/heure
15 mars 2022
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Léonard Monsaingeon (GFMUL Lisbon)

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

Le problème de Schrödinger (~1930) consiste à inférer la trajectoire d’un système de particules Browniennes, étant données les observations de ses distributions statistiques en un temps initial et terminal. Récemment des liens profonds avec le Transport Optimal ont été mis à jour, permettant de voir le problème de Schrödinger comme une version bruitée du problème déterministe du transport optimal classique (géodésiques dans l’espace de Wasserstein des mesures de probabilités). Le niveau de bruit est déterminé par un paramètre de température $\varepsilon>0$, et l’interpolation temporelle est pilotée énergétiquement parlant par l’entropie de Boltzmann. Dans la limite de petit bruit, il est bien connu que ce problème bruité Gamma-converge vers sa contrepartie déterministe, ce qui est remarquablement utile numériquement. Dans cet exposé je discuterai une extension naturelle à des problèmes de Schrödinger géométriques dans des espaces métriques abstraits. On peut établir dans ce cadre un résultat de Gamma-convergence très général, et je montrerai comment la preuve mène également à des nouveaux résultats de convexité.