Universal higher Lie algebras of singular spaces and their symmetries

Date/heure
9 novembre 2022
10:45 - 11:45

Oratrice ou orateur
Ruben Louis

Catégorie d'évènement
Séminaire des doctorants


Résumé
1. Nous montrons qu’il existe une équivalence de catégories entre les algèbres de Lie-Rinehart sur
une algèbre commutative O et classes d’équivalence d’homotopie d’algébroïdes de Lie infinie
acycliques graduées négativement. Par conséquent, ce résultat donne un sens à l’algébroïde
de Lie infinie universelle d’un feuilletage singulier, sans hypothèse supplémentaire, et pour les algébroïdes de Lie singulières d’Androulidakis-Zambon. Ceci étend à un cadre purement algébrique
la construction de la Q-variété universelle d’un feuilletage singulier localement réel analytique
de  Lavau-C.L.-Strobl.
2. La deuxième partie est consacrée à quelques applications des résultats sur les algèbres de Lie-Rinehart.
(a) On associe à toute variété affine une algébroïde de Lie infinie universelle de l’algèbre de Lie-
Rinehart de ses champs de vecteurs. Nous étudions l’effet de certaines opérations courantes
sur des variétés affines telles que les éclatements, germes en un point, etc.
(b) Nous donnons une interprétation de l’éclatement d’un feuilletage singulier F au sens de
Mohsen  en termes de l’algébroïde de Lie infinie universelle de F.
(c) Nous étudions les symétries de feuilletages singuliers à travers des algébroïdes de Lie infinie
universelles. Plus précisément, nous prouvons qu’une action par symétrie faible d’une algèbre
de Lie g sur un feuilletage singulier F (qui est moralement une action de g sur l’espace des
feuilles M/F induit un unique morphisme de Lie infini à homotopie près de g vers l’algèbre
de Lie différentielle graduée (DGLA) des champs de vecteurs sur un algébroïde de Lie infinie
universelle de F. On déduit de ce résultat général plusieurs conséquences. Par exemple,
nous donnons un exemple d’action d’algèbre de Lie sur une sous-variété affine qui ne peut
s’étendre à l’espace ambiant. Enfin, nous présentons la notion de tour de bisubmersions
sur un feuilletage singulier et relève des symétries à celles-ci.