Universalité dans les modèles avec contraintes cinétiques : le rôle des barrières d’énergie

Date/heure
30 janvier 2020
10:45 - 11:45

Oratrice ou orateur
Laure Marêché

Catégorie d'évènement
Séminaire Probabilités et Statistique


Résumé

Les modèles avec contraintes cinétiques constituent une classe de
modèles de mécanique statistique qui ont été introduits par les
physiciens pour décrire le comportement du verre. Il s’agit de modèles
de configurations sur des graphes dans lesquels chaque sommet du graphe
est soit à  l’état 0, soit à  l’état 1, et ne peut changer d’état que si
une contrainte de la forme « il y a assez de zéros dans le voisinage du
sommet » est satisfaite. Il existe une infinité de contraintes
possibles, et les propriétés d’un modèle dépendent fortement du choix de
sa contrainte. Une question très importante est donc celle de
l’universalité : peut-on répartir cette infinité de modèles en un nombre
fini de classes selon leur comportement ? Cette question a récemment été
résolue lorsque le graphe de base est Z2 pour une classe de modèles plus
simple, la percolation bootstrap, que l’on peut considérer comme une
version déterministe et monotone des modèles avec contraintes
cinétiques. Cependant, les modèles avec contraintes cinétiques
présentent un phénomène de barrière d’énergie qui peut rendre leur
comportement très différent de celui de la percolation bootstrap, et
nécessitent donc une classification d’universalité plus fine. Dans cet
exposé, on présentera une telle classification d’universalité pour les
modèles avec contraintes cinétiques.