Processus renforcés, champs aléatoires et limites d’échelle

Date/heure
5 octobre 2023
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Valentin Rapenne (IECL)

Catégorie d'évènement
Séminaire Probabilités et Statistique


Résumé

Le Processus de saut renforcé par sommet (VRJP en raison de son acronyme anglais) est un processus aléatoire en temps continu auto-renforcé défini sur un graphe : plus il passe par un sommet, plus il est probable qu’il y revienne à l’avenir. Depuis les travaux de Sabot et Tarrès, on sait que le VRJP peut être vu comme un processus Markovien en environnement aléatoire. Cet environnement est caractérisé par un certain champ aléatoire U qui, étonnamment, était déjà connu par les physiciens en tant que modèle sigma super-symétrique H^{(2|2)}, un objet important en physique quantique. Par un changement de variable, on peut ramener l’étude du champ U à celle d’un autre champ beta. Ce champ beta permet de définir un opérateur de Schrödinger aléatoire H dont les propriétés sont reliées au VRJP. H est notamment inversible et son inverse G permet de retrouver l’environnement du VRJP. Dans cet exposé, nous expliquerons ce cheminement allant du VRJP vers les champs aléatoires et nous expliquerons les résultats connus sur ces champs et sur le VRJP. Pour finir, nous parlerons d’un résultat plus récent établissant la limite d’échelle de G sur le cercle. Cela permet de définir un opérateur de Schrödinger aléatoire continu analogue à H sur le cercle.