Date/heure
10 février 2025
14:00 - 15:00
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Enrica Mazzon
Catégorie d'évènement
Séminaire de géométrie complexe
Résumé
Les variétés de Fano sont des variétés projectives complexes avec premier caractère de Chern positif. Cette condition de positivité a des implications profondes en géométrie et en arithmétique. Par exemple, les variétés de Fano sont recouvertes par des courbes rationnelles , et les familles de variétés de Fano sur des bases unidimensionnelles admettent toujours des sections holomorphes. Ces dernières années, il y a eu un effort important pour définir des analogues supérieurs à la condition de Fano, qui devraient présenter des versions renforcées de propriétés des variétés de Fano. Dans cet exposé, je parlerai donc des « variétés de Fano supérieures » définies en termes de positivité des autres caractères de Chern. Ce travail est en collaboration avec Carolina Araujo, Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova et Nivedita Viswanathan.