Date/heure
12 janvier 2023
10:45 - 11:45
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Vincent Bansaye (École polytechnique)
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
Les processus de branchement apparaissent dans de nombreux modèles de dynamique des populations, notamment pour décrire des invasions. En particulier, ils interviennent dans la description des premières phases d’une épidémie pour déterminer si le nombre d’infectés va exploser ou non et si oui à quelle vitesse. Dans ces modèles, la description des contacts joue un rôle important.
Après une introduction sur ces problématiques, nous nous focaliserons sur un modèle incluant le traçage des contacts. Dans ce modèle, les individus infectent en population mélangée à taux fixe et l’information sur le contact infectieux est perdu à taux fixe, tandis que le test d’un individu infecté aboutit à l’isolement de la composante connexe associée aux contacts encore connus. Grâce à une propriété d’«éclatement» des arbres récursifs uniformes, nous pourrons réduire le modèle à un processus de croissance fragmentation isolation sur les tailles des composantes.
Nous exploiterions alors des techniques récentes d’analyse quantitative des semi groupes non conservatifs et des processus de branchement associé. Cela permettra d’obtenir des convergences fortes pour décrire la propagation de l’épidémie.
Enfin, nous évoquerons des extensions de ce modèle et la prise en compte d’une structuration spatiale des contacts via de grands graphes aléatoires spatialisés, impliquant des techniques d’homogénéisation stochastique.
Ces travaux sont respectivement des collaborations avec Chenlin Gu (Pékin) et Linglong Yuan (Liverpool), Michele Salvi (Rome) et Elisabeta Vergu (INRAe Jouy).