Date/heure
17 mars 2022
10:45 - 11:45
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Vincent Duval (INRIA Paris)
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
Ces dernières années, les méthodes de reconstruction avec a priori de parcimonie (LASSO, Basis Pursuit), très utilisées en statistiques comme en traitement d’images, ont été adaptées pour opérer sur un domaine continu (Beurling Minimal extrapolation, Beurling-LASSO…): on reconstruit alors une somme de masses de Dirac plutôt qu’un vecteur parcimonieux.
Le fait de travailler sur un domaine continu apporte de nombreux avantages: absence de grille de reconstruction et des artefacts de discrétisation associés, analyse plus simple, et algorithmes tirant parti de la structure lisse du problème.
Dans cet exposé, nous nous proposons d’étendre cette démarche à la reconstruction d’objets plus complexes: plutôt que des sources ponctuelles, on veut reconstruire des images constantes par morceaux à l’aide de la régularisation par variation totale du gradient (comme dans les travaux de Rudin, Osher et Fatemi).
Nous montrons qu’en étudiant la boule unité associée, on peut décrire la structure des minimiseurs et définir un algorithme de type Frank-Wolfe « sans grille » pour la résolution du problème.
L’avantage d’une telle méthode est la préservation des bords et l’isotropie des solutions.
Il s’agit d’un travail commun avec Romain Petit et Yohann De Castro.