Partial differential equations seminars in Metz and Nancy
The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy
During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).
Upcoming presentations
Séminaire: Convection-dominated transport problems in thin graph-like networks
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel'nyk Résumé :The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.
Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.
Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 December 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Séminaire: titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :Résumé à venir
Romeo LEYLEKIAN
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :Laure GIOVANGIGLI
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :Lucas COEURET
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :Marc PEGON
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :Nicolas VANSPRANGHE
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :Benoit MERLET
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :Camille LAURENT
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :Past presentations
The Klein-Gordon equation on curved spacetimes and its propagators
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 February 2018 11:00-12:00 Lieu : Oratrice ou orateur : Jan Derezinski Résumé :The Klein-Gordon equation has several natural Green’s functions, often called propagators. The so-called Feynman propagator, used in quantum field theory, has a clear definition on static spacetimes. I will discuss, partly on a heuristic level, its possible generalizations to the non-static case. I will also describe a curious, partly open problem about the self-adjointness of the Klein-Gordon operator. I will also describe how to compute the singularities around the diagonal using a special geometric version of pseudodifferential calculus
Soap bubbles in some sub-Riemannian spaces
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Valentina Franceschi Résumé :The aim of this seminar is to present some results about minimal bubble clusters in some sub-Riemannian spaces. This amounts to find the best configuration of $min mathbb N$ regions in a manifold enclosing given volumes, in order to minimize their total perimeter. In a $n$-dimensional sub-Riemannian manifold, the perimeter is a non-isotropic $(n-1)$-dimensional measure that is defined according to the geometry. After an introduction to the subject, we will present some results concerning the cases $m=1$ (isoperimetric problem) and $m=2$ (double bubble problem), in a class of sub-Riemannian structures connected to the Heisenberg geometry. This is the framework of an open problem about the shape of isoperimetric sets, known as Pansu’s conjecture. We start by presenting the isoperimetric problem in Grushin spaces and Heisenberg type groups, under a symmetry assumption that depends on the dimension (based on joint work with R. Monti, University of Padova). We conclude by showing some recent results in collaboration with Giorgio Stefani (SNS, Pisa) concerning the double bubble problem in the Grushin plane.
Intégrales fortement oscillantes en imagerie optique 3D
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 16 February 2018 11:00-12:00 Lieu : Oratrice ou orateur : Jean-Baptiste Bellet Résumé :La tomographie réflective est une méthode émergente en imagerie optique 3D. On observe qu’elle reconstruit pertinemment une scène 3D à partir d’images en intensité, malgré des concavités ou des occultations. Pour aller plus loin, on décrit la tomographie réflective à l’aide d’un modèle asymptotique géométrique, dans un cadre d’intégrales fortement oscillantes. Ce modèle original est en accord avec les résultats numériques ; il décrit les parties reconstruites, et permet de cerner les artefacts. Enfin, on déduit de ce modèle asymptotique une version accélérée du solveur de reconstruction.
Simulation d'écoulements de bio-fluides dans le cerveau
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 9 February 2018 11:15-12:15 Lieu : Oratrice ou orateur : Stéphanie Salmon Résumé :Nous nous intéressons dans cet exposé à la modélisation et à la simulation numérique des écoulements de sang et de liquide cérébro-spinal dans le cerveau, réalisées dans le cadre d’un projet ANR VIVABRAIN. En particulier, la validation des simulations numériques concernant le vivant étant une question très complexe, nous montrons dans cet exposé l’approche que nous avons choisie pour valider nos simulations d’écoulements de bio-fluides en géométries réalistes.
Densité en GSBD et approximation d'énergie de rupture fragile
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 February 2018 10:45-11:45 Lieu : Oratrice ou orateur : Vito Crismale Résumé :The seminar concerns the approximation à la Ambrosio-Tortorelli of the Griffith energy functional for brittle fracture. While the Griffith energy depends on the n-1 dimensional discontinuity set of any function, the approximating energies are elliptic functionals (depending on a further emph{phase field} variable) so more convenient to minimise by Numerical Analysis techniques. For this reason this phase field approximation is employed in a large number of Mechanical works. The result applies to the Dirichlet minimisation problem and follows from a sharp density result in the energy space for the Griffith functional, that can be applied in other situations, e.g. to prove different approximations of Griffith energy.
Inégalités log-convexes pour les solutions de la chaleur
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 February 2018 09:15-10:15 Lieu : Oratrice ou orateur : Rémi Buffe Résumé :Nous nous intéresserons à l’obtention d’inégalités log-convexes à poids portant sur les solutions de l’équation de la chaleur. La présence du poids permet de localiser l’information sur un sous-domaine, et permet ainsi de quantifier le prolongement unique ponctuel en temps. Nous essayerons de faire le lien avec les méthodes classiques d’inégalités de Carleman.
Détection par la lumière de tumeurs cancéreuses
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 February 2018 11:00-12:00 Lieu : Oratrice ou orateur : Fatmir Asllanaj Résumé :Nos travaux portent sur l’imagerie optique des tissus biologiques en utilisant la lumière visible ou proche IR. C’est une technique non-invasive qui consiste à reconstruire les propriétés optiques des tissus biologiques dans le but de détecter d’éventuelles tumeurs cancéreuses. Nous utilisons l’Equation du Transfert Radiatif (ETR) comme modèle (direct) de propagation de la lumière. Une analyse de sensibilité des paramètres du modèle a montré que le facteur d’anisotropie g de la fonction de phase de Henyey-Greenstein est le paramètre le plus sensible suivi du coefficient de diffusion puis du coefficient d’absorption. Notre algorithme de reconstruction est basé sur une méthode de Quasi-Newton. Le gradient de la fonction objectif est calculé efficacement par la méthode adjointe appliquée à l’ETR avec une approche Multi-fréquences. Lors de mon exposé, je présenterai les modèles (sans et avec fluorescence) sur lesquels nous travaillons, les méthodes numériques que nous avons développé ainsi que les résultats que nous avons obtenu sur la reconstruction 2D et 3D de nos milieux biologiques. Le facteur g, utilisé comme nouvel agent de contraste optique endogène, permet de marquer davantage les tumeurs cancéreuses.
Conditions suffisantes pour le contrôle frontière d'une équation des ondes avec une condition de transmission
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Ludovick Gagnon Résumé :L’équation des ondes avec une condition de transmission modélise la propagation d’ondes dans des milieux différents avec des vitesses de propagation différentes. à€ l’interface de ces milieux, la condition de transmission est équivalente, pour les rayons, à la loi de Snell-Descartes. Un rayon incident à l’interface peut donc être réfléchi dans le milieu d’o๠il provient et transmis dans l’autre milieu. La difficulté du problème d’observabilité de cette équation repose sur le fait que la condition de contrôle géométrique n’est plus suffisante. En effet, des interférences entre des rayons transmis et réfléchis peuvent survenir à l’interface de sorte qu’un rayon observé dans la région d’observation ne donne pas suffisamment d’informations sur le rayon initial. Dans cet exposé nous présenterons des conditions géométriques suffisantes pour l’observabilité frontière de l’équation des ondes avec une condition de transmission. Nous introduirons une construction géométrique permettant d’analyser systématiquement la propagation des rayons provenant de l’interface.
La dimension diamétrale : un invariant topologique revisité
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 26 January 2018 11:00-12:00 Lieu : Oratrice ou orateur : Françoise Bastin Résumé :Le résumé se trouve ici.
Interaction vague-structure pour des modèles d'ondes longues en présence d'un objet en translation au fond
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 January 2018 10:45-11:45 Lieu : Oratrice ou orateur : Krisztian Benyo Résumé :Dans cet exposé, nous présentons de nouveaux résultats concernant un problème d’interaction fluide-structure. Nous considérons le problème de Cauchy pour l’équation des vagues dans le cas o๠le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet de la force de pression du fluide. Nous examinons deux systèmes asymptotiques décrivant le cas d’un fluide parfait incompressible en faible profondeur correspondant aux équations de Saint-Venant et de Boussinesq. Nous décrivons le système couplé dans ces deux régimes asymptotiques afin d’établir des résultats d’existence et d’unicité pour des données régulières (au sens de Sobolev). Afin de déterminer le mouvement du solide, une analyse précise des termes asymptotiquement singuliers induits par les forces de frottements est nécessaire.