Seminars

Partial differential equations seminars in Metz and Nancy

The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy

During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).

Upcoming presentations

Séminaire: Convection-dominated transport problems in thin graph-like networks

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel'nyk Résumé :

The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.

Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.


Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 December 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :

Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives


Régularité d'un problème à frontière libre d'ordre 4

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Séminaire: titre à venir

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :

Résumé à venir


Romeo LEYLEKIAN

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Laure GIOVANGIGLI

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Lucas COEURET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Marc PEGON

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Nicolas VANSPRANGHE

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Past presentations

Gradient estimates for nonlinear elliptic equations with a gradient term

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 September 2017 11:00-12:00 Lieu : Oratrice ou orateur : Florica Cirstea Résumé :

Let $Ngeq 2$ and $Omegasubseteq mathbb{R}^N$ denote a domain containing the origin $0$. In this talk, we present recent gradient estimates for the positive solutions $uin C^2(Omegasetminus{0})$ of nonlinear elliptic equations such as $$ {rm div} (|x|^{sigma}|nabla u|^{p-2} nabla u)= |x|^{-tau} u^q |nabla u|^m quad mathrm{in } Omega setminus { 0 }. $$ We assume throughout that $m,p,q,sigma$ and $tau$ are real parameters satisfying $p in ]1,N+sigma]$ and $min{k,ell,m,q}in ]0,+infty[$, where $k:=m+q-p+1$ and $ell:=q+1-sigma-tau $. This is joint work with Joshua Ching (The University of Sydney).


Modèles prédateurs-proie avec forte compétition : l'émergence de meutes et de la territorialité

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 September 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alessandro Zilio Résumé :

On présentera une séries de travaux en collaboration avec Henri Berestycki sur des systèmes de prédateurs qui interagissent entre eux et avec une seule proie. Ce système est lié au célèbre modèle de dynamique de population de Lotka et Volterra, ainsi que au modèle de Gross et Pitaevskii proposé pour l’étude des condensats de Bose-Einstein, et à  des modèles de réactions chimiques distribuées spatialement. On analysera le cas de prédateurs qui, comme les loups, peuvent se partager en meutes hostiles. Les questions qui on se posera sont de comprendre sous quelles conditions les prédateurs se partagent en meutes, s’il y a un avantage à  avoir des meutes hostiles et finalement de comparer les différents configurations qui émergent dans ce contexte. Plus précisément, on se concentra sur l’analyse des solutions stationnaires, notamment leur stabilité, et sur l’asymptotique du système quand le paramètre de compétition diverge.


Comparaison des solutions d'EDP par la symétrisation de Schwarz

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 September 2017 09:15-10:15 Lieu : Oratrice ou orateur : Said Benachour Résumé :

Résumé


Separable cubic modeling in optimization

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 June 2017 10:45-11:45 Lieu : Oratrice ou orateur : Marcos Raydan Résumé :

Résumé


Un résultat de type Bernstein pour l'équation des surfaces minimales

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 June 2017 10:45-11:45 Lieu : Oratrice ou orateur : Alberto Farina Résumé :

Résumé


Homogenized models for diffusion processes in composite media with imperfect interfaces

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 2 June 2017 11:00-12:00 Lieu : Oratrice ou orateur : Claudia Timofte Résumé :

In this talk, we shall present some homogenization results, obtained via the periodic unfolding method, for thermal diffusion problems in a highly heterogeneous periodic composite material formed by two constituents, separated by an imperfect interface where the temperature and the flux exhibit jumps. Depending on the geometry of the composite medium, on the properties of its two constituents and on the magnitude of the jump of the solution and of the flux across the imperfect interface, various types of problems arise at the macroscale. These problems capture in various ways the influence of the jumps: in the effective coefficients, in the right-hand side of the homogenized problem, and in the correctors, as well. Joint work with Renata Bunoiu (Université de Lorraine – Metz, France)


Sur les solutions localement minimisantes de Ginzburg-Landau dans R^3

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 May 2017 10:45-11:45 Lieu : Oratrice ou orateur : Etienne Sandier Résumé :

Nous montrons avec I.Shafrir qu’une solution localement minimisante non constante de $R^3$ à  valeurs dans $R^2$ de l’équation de Ginzburg-Landau a une énergie qui croît au moins comme celle du filament de vorticité. Nous conjecturons d’ailleurs que le filament de vorticité est l’unique solution localement minimisante.


Des EDP physiologiquement structurées pour représenter la résistance aux traitements du cancer et optimiser les stratégies thérapeutiques anticancéreuses

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 May 2017 10:45-11:45 Lieu : Oratrice ou orateur : Jean Clairambault Résumé :

Résumé


Application d'une méthode de points intérieurs à  la programmation semi définie

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 May 2017 09:15-10:15 Lieu : Oratrice ou orateur : Jean-Rodolphe Roche Résumé :

Résumé


Avancées récentes dans la simulation diphasique utilisant les méthodes de Volume de Fluid (VOF)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 May 2017 10:45-11:45 Lieu : Oratrice ou orateur : Stéphane Zaleski Résumé :

Résumé