Seminars

Partial differential equations seminars in Metz and Nancy

The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy

During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).

Upcoming presentations

Ruikang Liang (LJLL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ruikang Liang (LJLL) Résumé :

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Sophie de Suzzoni (Polytechnique) Résumé :

Groupe de travail : Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin's law through the vertical displacements

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 May 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :

The main objective of this work is to study the stability of a linear one-dimensional thermoelastic Bresse system in a bounded domain, where the coupling is given through the first component of the Bresse model with the heat conduction of Gurtin-Pipkin type. Two kinds of coupling are considered; the first coupling is of order one with respect to space variable, and the second one is of order zero. We state the well-posedness and show the polynomial and strong stability of the systems for regular and weak solutions, respectively, where the polynomial decay rates depend on the smoothness of the initial data. Moreover, in case of coupling of order one, we prove the equivalence between the exponential stability and some new conditions on the parameters of the system. However, when the coupling is of order zero, we prove the non-exponential stability independently of the parameters of the system. Applications to the corresponding particular Timoshenko models are also given, where we prove that both couplings lead to the exponential stability if and only if some conditions on the parameters of the systems are satisfied, and both couplings guarantee the polynomial and strong stability for regular and weak solutions, respectively, independently of the parameters of the systems. The proof of the well-posedness result is based on the semigroups theory, whereas a combination of the energy method and the frequency domain approach is used for the proof of the stability results.

For the details, see the following paper:

A. Guesmia, Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin’s law through the vertical displacements, SeMa J., (2023), 1-49.


Jérôme Le Rousseau (Université Paris Nord)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Groupe de travail : auchy systems of type Rao-Nakra sandwich beam with frictional dampings or infinite memories: some Lq(R)-norm polynomial stability estimates (q[1,+])

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 June 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :

The objective of this work is to study the stability of two systems of type Rao-Nakra sandwich beam in the whole line R with a frictional damping or an infinite memory acting on the Euler-Bernoulli equation. When the speeds of propagation of the two wave equations are equal, we show that the solutions do not converge to zero when time goes to infinity. In the reverse situation, we prove some L2(R)-norm and L1(R)-norm decay estimates of solutions and theirs higher order derivatives with respect to the space variable. Thanks to interpolation inequalities and Carlson inequality, these L2(R)-norm and L1(R)-norm decay estimates lead to similar ones in the Lq(R)-norm, for any q[1,+]. In our both L2(R)-norm and L1(R)-norm decay estimates, we specify the decay rates in terms of the regularity of the initial data and the nature of the control. Applications to some Cauchy Timoshenko type systems will be also given. The proof is based on the energy method combined with the Fourier analysis (by using the transformation in the Fourier space and well chosen multipliers).

A part of these results was obtained in collaboration with Salim Messaoudi (University of Sharjah, UAE).

For the details, see the following papers:

A. Guesmia, Some Lq(R)-norm decay estimates (q[1,+]) for two Cauchy systems of type Rao-Nakra sandwich beam with a frictional damping or an infinite memory, J. Appl. Anal. Comp., 12 (2022), 2511-2540.
A. Guesmia, On the stability of a linear Cauchy Rao-Nakra sandwich beam under frictional dampings, Taiwanese J. Math., 27 (2023), 799-811.
A. Guesmia and S. Messaoudi, Some L2(R)-norm and L1(R)-norm decay estimates for Cauchy Timoshenko type systems with a frictional damping or an infinite memory, J. Math. Anal. Appl., 527 (2023), 127385.


Karol Bołbotowski (Université de Varsovie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Past presentations

Weighted Hardy's inequalities and applications to singular parabolic equations

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 March 2016 14:00-15:00 Lieu : Oratrice ou orateur : Abdelaziz Rhandi Résumé :

Résumé


Indirect controllability of some linear parabolic systems of two equations with one control involving coupling terms of first order

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 March 2016 10:45-11:45 Lieu : Oratrice ou orateur : Michel Duprez Résumé :

Résumé


Reconstruction numérique d'inclusions électromagnétiques dans des domaines 3D bornés

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 12 February 2016 14:00-15:00 Lieu : Oratrice ou orateur : Séraphin Mefire Résumé :

Résumé


On the uniqueness and stability of an inverse problem in photo-acoustic tomography

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 8 February 2016 14:00-16:00 Lieu : Oratrice ou orateur : Erica Schwindt Résumé :

Résumé


Equations de réaction-diffusion hétérogènes pour des modèles de changement climatique

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 February 2016 14:00-15:00 Lieu : Oratrice ou orateur : Thomas Giletti Résumé :

Dans cet exposé, on présentera certains résultats sur le comportement en temps grand des solutions des équations de réaction-diffusion, dont le terme de réaction dépend de la variable xct, la position dans un repère mobile. Ces équations peuvent être comprises comme des modèles simplistes de dynamique de populations sous l’influence d’un changement climatique. On montrera en particulier qu’en présence d’un effet Allee faible (corrélation positive entre le taux de croissance d’une population et sa densité), la taille de la population initiale est cruciale pour la survie de l’espèce, ce qui n’est pas le cas pour une équation homogène semblable. Je consacrerai également une partie de cet exposé à  une présentation de certains résultats classiques sur le comportement en temps grand des solutions des équations de réaction-diffusion dans le cas homogène.


Valeurs propres de Cosserat dans un domaine avec coins

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 January 2016 14:00-15:00 Lieu : Oratrice ou orateur : Martin Costabel Résumé :

Le problème spectral de Cosserat vient de la mécanique de la fin du 19e siècle, mais par ses relations avec la condition LBB et les équations de Stokes il a récemment gagné en popularité. En présence de coins, il existe un spectre essentiel causé par les singularités de coin des fonctions propres. Si ces singularités se déterminent bien par la théorie classique de Kondratev, leur rôle pour le spectre et son approximation numérique est original. Je présenterai des resultants récents théoriques et expérimentaux sur la convergence (ou non-convergence) de diverses approximations.


Résolution en solitons: wave maps équivariantes et équation des ondes nonlinéaire

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 January 2016 10:45-11:45 Lieu : Oratrice ou orateur : Raphael Côte Résumé :

Résumé


Décroissance de l'énergie locale dans un guide d'onde dissipatif

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 22 January 2016 14:00-15:00 Lieu : Oratrice ou orateur : Julien Royer Résumé :

On montre la décroissance de l’énergie locale pour l’équation des ondes dans un guide d’onde avec dissipation constante au bord. On observe que l’onde se comporte en fait en temps grand comme la solution d’une équation de la chaleur. La preuve repose sur des estimées de résolvante. Comme les fonctions propres du problème transverse ne forment pas une base de Riesz, l’analyse spectrale ne se réduit pas de façon évidente à  des études “séparées” sur des domaines compacts et euclidiens.


Simulation de modèles de propagation d’ondes sur des demi-espaces et des quarts de plan

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 15 January 2016 14:00-15:00 Lieu : Oratrice ou orateur : Laurent Di Menza Résumé :

Dans cet exposé, on présentera une nouvelle approche de l’utilisation de conditions aux limites transparentes pour l’équation de Schrödinger et l’équation des ondes linéaires. L’idée est de pouvoir les rendre locales en considérant une inconnue auxiliaire qui sera calculée sur tout le domaine et liée à  la solution de l’équation initiale par un couplage linéaire et local sur le bord. On présentera des résultats numériques en dimensions 1 et 2, sur des demi-espaces et des quarts de plan, la difficulté de ce dernier cas étant la présence d’une singularité géométrique.


Integro-difference equations and climate change in a variable environment

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 January 2016 10:45-11:45 Lieu : Oratrice ou orateur : Juliette Bouhours Résumé :

Résumé