The organizers of the seminars and doctoral student days are : Nicolas Dante, Nicolas Frantz, Vincent Hass, Jimmy Payet et Pierre Popoli.
Upcoming presentations
Past presentations
Espace projectif complexe, sous-variétés analytiques et théorème de Chow
Catégorie d'évènement : Séminaire des doctorants Date/heure : 6 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yann Millot Résumé :Le but de cet exposé est de présenter les différents concepts de base de la géométrie, en particulier de la géométrie complexe. L’objet de base de toute géométrie est la variété (différentielle, algébrique, complexe) qui généralise la notion d’ouvert d’un espace vectoriel. Par exemple, la surface terrestre ressemble localement au plan réel, mais pas dans sa globalité, et la théorie des variétés différentielles va permettre de comprendre cet objet. La géométrie complexe est plus restrictive par ses fonctions sont beaucoup moins nombreuses, mais un exemple qui apparait naturellement l’espace projectif, car il est possible de mettre une structure géométrique sur un ensemble de droites vectorielles. Enfin, les géométries algébrique et analytique complexes entretiennent des liens proches, tout polynôme étant une fonction holomorphe, toute variété algébrique peut-être vue comme une variété complexe. Cependant, les fonctions holomorphes se comportent presque comme des polynômes, il est donc naturel de s’interroger sur une éventuelle réciproque : Dans le cas projectif, la réponse a été donnée par W.L. Chow en 1949.
Representation Theory of Lie groups and applications in Physics and Neural Networks
Catégorie d'évènement : Séminaire des doctorants Date/heure : 23 March 2022 10:45-11:45 Lieu : Oratrice ou orateur : Rafailia Tsiavou Résumé :Résumé à venir
L’homologie persistante appliquée à l’analyse musicale
Catégorie d'évènement : Séminaire des doctorants Date/heure : 9 March 2022 10:45-11:45 Lieu : Salle de séminaires Metz Oratrice ou orateur : Victoria Callet Résumé :L’homologie persistante est un outil de la théorie simpliciale construit à la fin du XXième siècle et qui s’utilise principalement en Analyse Topologique des Données (TDA) et reconnaissance de forme. L’idée principale est d’extraire un nuage de points d’un objet que l’on souhaite étudier et de transformer ce nuage en un complexe simplicial filtré, en utilisant par exemple la méthode de Vietoris-Rips. Le but de l’homologie persistante est de calculer l’homologie simpliciale du complexe à chaque temps de filtration et d’observer les caractéristiques topologiques qui persistent au cours de la filtration. Cette approche permet d’encoder l’évolution topologique d’un objet à travers une seule structure algébrique. L’homologie persistante a des applications dans de nombreux domaines (en biologie, médecine, astrophysique,…) et dans cet exposé, après avoir défini l’homologie persistante en reprenant les bases de la théorie simpliciale, nous montrerons comment celle-ci peut s’appliquer dans le contexte de l’analyse musicale.
Un voyage quantique autour de l'équation des plus bas niveaux de Landau
Catégorie d'évènement : Séminaire des doctorants Date/heure : 26 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Valentin Schwinte Résumé :Titre à venir
Catégorie d'évènement : Séminaire des doctorants Date/heure : 15 December 2021 14:00-15:00 Lieu : Oratrice ou orateur : Bastien Laboureix (LORIA,Nancy) Résumé :Journées des doctorants 2021
Catégorie d'évènement : Doctorants Date/heure : 2 December 2021 09:00-18:00 Lieu : Oratrice ou orateur : Résumé :L’objectif de cette journée est de rassembler les doctorants de Nancy et de Metz afin de faire plus ample connaissance autour d’exposés mathématiques.
Le programme est de 3 exposés le matin et 3 exposés le soir. La journée se passera entièrement à l’Amphi 7.
Organisateurs: Nicolas Frantz (Metz), Jimmy Payet (Metz) et Pierre Popoli (Nancy).
Variétés de Shimura sur les corps finis
Catégorie d'évènement : Séminaire des doctorants Date/heure : 24 November 2021 10:45-11:45 Lieu : Oratrice ou orateur : Thibault Alexandre (Sorbonne Université, Paris) Résumé :Les variétés de Siegel sont des variétés de Shimura qui paramètrent des variétés abéliennes avec une polarisation. Le premier exemple est la courbe modulaire dont l’importance est cruciale en théorie des nombres : elle intervient dans la preuve du théorème de Fermat-Wiles et plus généralement dans la correspondance de Langlands pour $GL_2$ sur $\mathbb{Q}$. Dans cet exposé, j’introduirai les variétés de Siegel en tant que variétés algébriques sur un corps fini et je décrirai les propriétés géométriques de certains fibrés vectoriels automorphes vivant dessus.
Théorie de la diffusion pour le modèle optique nucléaire
Catégorie d'évènement : Séminaire des doctorants Date/heure : 20 October 2021 10:45-11:45 Lieu : Oratrice ou orateur : Nicolas Frantz Résumé :Soutenance blanche de Gabriel Sevestre
Catégorie d'évènement : Séminaire des doctorants Date/heure : 15 June 2021 15:00-16:00 Lieu : Oratrice ou orateur : Gabriel Sevestre Résumé :Operateurs de Schrödinger semi-classiques et estimées $L^p$.
Catégorie d'évènement : Séminaire des doctorants Date/heure : 14 April 2021 14:00-15:00 Lieu : Oratrice ou orateur : Nhi Ngoc Nguyen Résumé :Les opérateurs de Schrödinger sont des incontournables dans la mécanique
quantique. J’exposerai d’abord des motivations physiques de l’étude
spectrale de ces objets. Plusieurs auteurs ont obtenu des bornes en
norme $L^p$ sur les quasi-modes des opérateurs de Schrödinger. On verra
ensuite comment se généralisent de telles estimées à des systèmes
orthonormés de fonctions. L’idée de l’exposé est de donner un avant-goût
des jolis outils sous-jacents.