Upcoming presentations
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 December 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentations
Yamabe-type invariants for open manifolds
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 December 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nadine Grosse Résumé :In the work of Ammann, Dahl and Humbert it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, and our investigations lead to an explicit positive lower bound for the spinorial threshold constants. This is joint work with Bernd Ammann, arXiv:1502.05232.
Surfaces aléatoires finies et infinies
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jean Raimbault Résumé :On s’intéressera d’abord à différents modèles aléatoires de surfaces de Riemann compactes (ou de volume fini), en particulier à leurs propriétés géométriques quand le genre tend vers l’infini. Ceci servira aussi de motivation pour introduire des modèles aléatoires de surfaces pointées de type infini.
Construction of Zollfrei metrics on $3$-manifolds
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 17 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Stephan Suhr Résumé :Guillemin calls a compact Lorentzian $3$-manifold “Zollfrei” if the geodesics flow on the nonzero lightlike vectors induces a fibration by circles (especially all lightlike geodesics are closed). He conjectured that these metric can only exist on $3$-manifolds covered by $S^2times S^1$. I will explain counterexamples on every nontrivial circle bundle over a closed surface. If time permits I will discuss what additional assumptions imply the conjecture and hint at what is the right conjecture in the general case.
Submanifolds with nonpositive extrinsic curvature
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 June 2015 14:00-15:00 Lieu : Oratrice ou orateur : Guilherme Machado de Freitas Résumé :We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature. Joint work with S. Canevari and F. Manfio.
Quelques résultats de rigidité pour les variétés à bord feuilleté
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 19 May 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nicolas Ginoux Résumé :Travail en commun avec Fida El Chami, Georges Habib et Roger Nakad. En nous basant sur des résultats d’Oussama Hijazi, Sebastià¡n Montiel et Simon Raulot, nous montrerons que, sous certaines hypothèses de courbure, une variété compacte à bord feuilleté est nécessairement un produit riemannien, au moins localement.
Groupes de torsion agissant sur un espace CAT(0)
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 May 2015 14:00-15:00 Lieu : Oratrice ou orateur : Rémi Coulon Résumé :Depuis le début du 20ème siècle, les groupes de torsion infinis ont été la source de nombreux développements en théorie de groupe : groupes de Burnside libre, monstre de Tarski, groupe de Grigorchuck, etc. D’un point de vue géométrique, on aimerait comprendre sur quel type d’espaces un tel groupe peut agir “raisonnablement” par isométries. Dans cet exposé, on étudiera le cas des espaces CAT(0) et plus précisément des complexes cubiques CAT(0). En particulier on présentera un exemple de groupe non moyennable muni d’une action propre sur un complexe cubique CAT(0). Le contenu de cet exposé est un travail en collaboration avec Vincent Guirardel.
Entropie extrémale et flots de Yamabe (av. P. Suarez-Serrato, UNAM Mexico)
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 28 April 2015 14:00-15:00 Lieu : Oratrice ou orateur : Samuel Tapie Résumé :Le flot géodésique sur les variétés riemanniennes est un système dynamique d’origine purement géométrique ; cependant relier ses propriétés dynamique à la géométrie de la variété sous-jacente n’est pas toujours facile. Les travaux de Katok et de Besson-Courtois-Gallot ont montré que pour les variétés compactes à courbure sectionnelle négative, les variétés localement symétriques correspondent exactement aux extrema de l’entropie. Qu’en est-il pour le flot sur des variétés qui n’admettent pas de structure localement symétrique ? Pour des variétés non-compactes ? Après avoir rappelé l’historique de ce problème, nous présenterons une réponse partielle à ces questions : dans chaque classe conforme de métrique, les extrema de l’entropie correspondent à des métriques à courbure scalaire constante.
Uniformisation CR sphérique des variétés de dimension trois
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 10 March 2015 14:00-15:00 Lieu : Oratrice ou orateur : Martin Deraux Résumé :On s’intéresse à classifier les variétés de dimension trois qui admettent une uniformisation CR sphérique, c’est-à -dire qui apparaissent comme le bord à l’infini de surfaces hyperboliques complexes. J’expliquerai des constructions géométriques explicites qui montrent qu’une infinité de variétés hyperboliques réelles admettent une uniformisation CR sphérique.
Circle bundles over surfaces and surface groups in SO(4,1) - a combinatorial approach.
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 February 2015 14:00-15:00 Lieu : Oratrice ou orateur : Son Lam Ho Résumé :This talk will describe various examples of surface groups in SO(4,1) in terms of fundamental domain of its action on S^3. This includes the first examples by Gromov-Lawson-Thurston, and new examples. We will also look at the quotient 3 manifolds which are circle bundles over closed surfaces and a proof of a soft bound on the Euler number of such circle bundles.
Harmonic complex forms on Kähler-Einstein manifolds with Killing Spin$^c$ spinors
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 10 February 2015 15:30-16:30 Lieu : Oratrice ou orateur : Roger Nakad Résumé :In a joint work with Mikaela Pilca (University of Regensburg-Germany), we establish a lower bound for the first eigenvalue of the Spin$^c$ Dirac operator defined on a Kähler-Einstein manifold $M$ of positive scalar curvature. This lower bound involves the index of $M$, its scalar curvature and an integer defining the Spin$^c$ structure. The limiting case is characterized by the existence of special spinor fields called Kählerian Killing spinors. As a geometric application of the limiting case, we prove that the only harmonic complex forms of type $(k, k)$ ($k>0$) on Kähler-Einstein manifolds admitting a complex contact structure are the constant multiples of the Kähler form.