PDE and applications seminar | Nancy

Upcoming presentations

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Abonnement iCal

Past presentations

Ensemble Kalman Filters - from Data Assimilation to general Inverse Problems

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 21 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mark Asch (Université de Picardie) Résumé :

In this talk, I will briefly recall the historical Kalman filter and its ensemble form. Then I will show how the latter has been successfully implemented for data assimilation, in particular in numerical weather forecasting. More recently, the Ensemble Kalman Filter has been proposed as a methodology for solving very general inverse problems in high-dimensional contexts. I will present the theory, show some simple applications and point out the numerous open problems that remain.


Anisotropic Sobolev inequalities with monomial weights

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Maria Rosaria Posteraro (Université de Naples) Résumé :

Observabilité optimale en temps grand de l’équation de la chaleur et positionnement optimal de capteurs

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 May 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yannick Privat (IECL) Résumé :

Il est bien connu que la reconstruction d’une donnée initiale associée à une équation parabolique à partir de mesures internes de sa solution pendant un temps T, sur un domaine $\omega$ appelé domaine d’observation équivaut à la question de l’observabilité, ou plus précisément à la positivité de ce qu’on appelle la constante d’observabilité associée à $\omega$. Cette constante dépend du domaine d’observation $\omega$ mais aussi de façon cruciale de l’horizon temporel T.  

Dans cet exposé, nous nous intéressons au positionnement optimal de capteurs thermiques. Il est raisonnable de modéliser cette question apr la recherche des domaines extrémaux (lorsqu’ils existent) maximisant cette constante d’observabilité. Pour être physiquement pertinent, nous imposons une restriction sur la mesure du domaine observé. 

Après avoir introduit une relaxation convexe du problème d’optimisation de la forme, nous déterminons le comportement asymptotique des maximiseurs lorsque T tend vers $+\infty$. En utilisant de façon cruciale un principe de la baignoire quantitatif, nous prouvons la forte convergence des maximiseurs vers la fonction caractéristique d’un ensemble mesurable que nous caractérisons précisément, et montrons en outre que cette convergence est exponentielle. 

Il s’agit d’un travail en collaboration avec Idriss Mazari (univ. Paris Dauphine) et Emmanuel Trélat (Sorbonne univ.)


Existence and boundedness of solutions to singular anisotropic elliptic equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 April 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Florica Cirstea (Université de Sydney) Résumé :
In this talk, we present new results on the existence and uniform boundedness of solutions for a general class of Dirichlet anisotropic elliptic problems
of the form
$$ -\Delta_{\overrightarrow{p}}u+\Phi_0(u,\nabla u)=\Psi(u,\nabla u) +f \quad \mbox{in } \Omega, \qquad u=0 \quad \mbox{on }\partial \Omega,$$
where $\Omega$ is a bounded domain in $ \mathbb R^N$ $(N\geq 2)$, $ \Delta_{\overrightarrow{p}}u=\sum_{j=1}^N \partial_j (|\partial_j u|^{p_j-2}\partial_j u)$ and
$\Phi_0(u,\nabla u)=\left(\mathfrak{a}_0+\sum_{j=1}^N \mathfrak{a}_j |\partial_j u|^{p_j}\right)|u|^{m-2}u$,
with $\mathfrak{a}_0>0$,
$m,p_j>1$,   $\mathfrak{a}_j\geq 0$ for $1\leq j\leq N$ and $N/p=\sum_{k=1}^N (1/p_k)>1$. We assume that $f \in L^r(\Omega)$ with $r>N/p$. The feature of this study  is the inclusion of a possibly singular gradient-dependent term $\Psi(u,\nabla u)=\sum_{j=1}^N |u|^{\theta_j-2}u\, |\partial_j u|^{q_j}$, where $\theta_j>0$ and $0\leq q_j<p_j$ for $1\leq j\leq N$.
This is joint work with Barbara Brandolini (Università degli Studi di Palermo).

Inverse Regge Pole Problem on a warped ball (séminaire en visioconférence)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 April 2024 13:00-14:00 Lieu : L'exposé sera diffusé en salle de visioconférence de Nancy et également via ce lien : https://webvisio.univ-lorraine.fr/meeting/5132?secret=734f4e30-f8c5-4938-8469-848f0f54d65d Oratrice ou orateur : Jack Borthwick (Université PcGill) Résumé :
Dans cet exposé, je parlerai d’un nouveau type de problème inverse sur des boules « tordues» consistant à déterminer la métrique à partir de la donnée des « pôles de Regge ». Ces derniers sont définis comme les pôles de la continuation méromorphe de l’opérateur Dirichlet à Neumann par rapport à un paramètre de moment angulaire complexe provenant d’une séparation des variables permise par la géométrie particulière des boules tordues.
Cet exposé est basé sur un travail commun avec N. Boussaïd et T. Daudé (Besançon).

 

! Attention ! Séminaire en visioconférence et à un horaire inhabituel.


Approximation du flot de courbure moyenne des structures minces

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 April 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Chih-Kang Huang (Institut Jean Lamour) Résumé :

Nous abordons l’approximation du flot de courbure moyenne des structures minces, pour lesquelles les méthodes classiques des champs de phase ne sont pas adaptées. Par structures minces, nous entendons soit des structures de codimension supérieure, typiquement des filaments, soit des surfaces non fermées et des surfaces non orientables.
Nous proposons une nouvelle approche qui consiste à introduire dans l’équation d’Allen-Cahn un terme de pénalisation localisé autour du squelette de l’ensemble en évolution. Cette approximation garantit une épaisseur minimale pendant l’évolution, prohibant ainsi les auto-intersections. L’efficacité numérique de notre approche est illustrée par des approximations du flot de courbure moyenne des filaments. Nous montrons son utilisation pour les approximations numériques aux problèmes de Steiner et de Plateau en dimension 3. Il s’agit d’un travail en collaboration avec Elie Bretin (INSA Lyon) et Simon Masnou (Lyon 1).


Stabilité en optimisation de forme sous contrainte de convexité

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 March 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jimmy Lamboley (Sorbonne Université) Résumé :
La notion de stabilité des inégalités fonctionnelles et géométriques a gagné beaucoup d’intérêt dans diverses communautés depuis une quinzaine d’année. Dans le cas de l’optimisation de forme (on minimise une énergie dont la variable est un sous-domaine de $\mathbb{R}^N$), la question se formule ainsi : si un domaine est l’unique minimiseur d’une certaine énergie, on voudrait savoir si les domaines ayant une énergie proche de la valeur minimale, sont nécessairement proches en un certain sens de ce minimum ; et ceci de façon quantifiée.
On présentera un exemple (l’inégalité isopérimétrique classique de l’espace euclidien) et une stratégie qui repose sur les notions de dérivation de forme et de théorie de régularité. On verra ensuite comment cette stratégie peut s’adapter à des exemples non standards quand on se restreint à la classe des domaines convexes.
Ceci est un travail en commun avec Raphaël Prunier

On singular limits arising in mechanical models of tumour growth

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 March 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Noemi David (Université de Lyon) Résumé :

The mathematical modelling of cancer has been increasingly applying fluid-dynamics concepts to describe the mechanical properties of tissue growth. The biomechanical pressure plays a central role in these models, both as the driving force of cell movement and as an inhibitor of cell proliferation. In this talk, I will present how it is possible to build a bridge between models that have different pressure-velocity or pressure-density relations. In particular, I will focus on the inviscid limit from a Brinkman model to a porous medium-type model, and the incompressible limit that links the latter to a Hele-Shaw free boundary problem with density constraint.


A class of fractional parabolic reaction-diffusion systems with control of total mass : theory and numerics

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 March 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Maha Daoud (IECL) Résumé :


Existence de solutions de norme L^2 prescrite pour une équation de Schrödinger non linéaire posée sur un graphe métrique : le cas masse sur-critique. 

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 February 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louis Jeanjean (Université de France-Comté) Résumé :

Dans cet exposé, nous discutons de l’existence de solutions de norme L^2 prescrites pour des équations de Schrödinger non linéaires sur des graphes métriques. Une stratégie commune employée pour trouver une telle solution est de chercher un point critique sous contrainte de la fonctionnelle d’énergie associée. Certaines propriétés géométriques de la fonctionnelle varient en fonction de l’exposant du terme non linéaire de l’équation. Dans le cas dit de masse sous-critique, la fonctionnelle est bornée inférieurement et coercive sur la contrainte, de sorte que l’on peut rechercher un point critique en tant que minimum global. C’est pourquoi ce cas a été largement étudié ces dernières années.

Cependant, dans le cas complémentaire, connu sous le nom de masse sur-critique, la fonctionnelle d’énergie n’est plus bornée inférieurement sur la contrainte et présente un manque de d’estimation a priori sur les points critiques possibles. Par conséquent, on sait encore très peu de choses sur ce cas. A travers la présentation des quelques résultats existants, nous discuterons des principaux obstacles qui doivent être surmontés pour traiter ce cas sous des hypothèses générales. Nous présenterons également certains des outils qui ont déjà été développés à cette fin.

Cet exposé est basé sur des travaux communs avec J. Borthwick (Besançon puis Montréal), X. Chang (Changchun) et N. Soave (Turin).


1 2 3 4 5 6 7 8 9 10 11 12