PDE and applications seminar | Nancy

Upcoming presentations

Régularité d'un problème à frontière libre d'ordre 4

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :

Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.

C’est un travail en collaboration avec Jimmy Lamboley.


Romeo LEYLEKIAN

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :

Laure GIOVANGIGLI

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :

Lucas COEURET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :

Marc PEGON

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :

Nicolas VANSPRANGHE

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :

Benoit MERLET

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :

Camille LAURENT

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :

Abonnement iCal

Past presentations

Remarques sur le Problème de Cauchy pour le laplacien et Contrôle lagrangien de l'équation d’Euler

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 May 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Otared Kavian (Université de Versailles) Résumé :


On parabolic problems with superlinear gradient terms

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 May 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Martina Magliocca (Ecole normale supérieure Paris-Saclay) Résumé :


Inégalité de Faber-Krahn inverse pour le laplacien tronqué

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Enea Parini (Aix-Marseille Université) Résumé :

Dans cet exposé on va s’intéresser à une inégalité de Faber-Krahn inverse pour la valeur propre fondamentale $\mu_1(\Omega)$ de l’opérateur complètement nonlinéaire

\[ \mathcal{P}_N^+ u := \lambda_N(D^2 u), \]

où $\Omega \subset \mathbb{R}^N$ est un ouvert borné et convexe, et $\lambda_N(D^2 u)$ est la plus grande valeur propre de la matrice hessienne de $u$. On verra que le résultat découle de l’inégalité isopérimétrique

\[ \mu_1(\Omega) \leq \frac{\pi^2}{\text{diam}(\Omega)^2}. \]

De plus, on va discuter de la minimisation de $\mu_1$ sous différents types de contraintes. Les résultats ont été obtenus en collaboration avec Julio D. Rossi et Ariel Salort (Buenos Aires).


Adaptation d'un pathogène à plusieurs hôtes: The third man

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matthieu Alfaro (Université de Rouen Normandie) Résumé :

On considère un système de réaction-diffusion non locale décrivant l’adaptation d’un pathogène à $H$ hôtes, chacun étant associé à un différent optimum phénotypique dans $\mathbb R^n$. Le comportement en temps grand (persistance vs extinction) du problème de Cauchy associé est donné par le signe d’une valeur propre principale. Une grande partie de l’étude se concentre sur le cas $H=3$ (qui est très riche!). On compare notamment avec le cas $H=2$ et montre que la présence d’un troisième hôte peut favoriser ou entraver l’adaptation…


La méthode de Lyapunov pour des solutions de systèmes de Réaction-Diffusion

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour (IECL) Résumé :

Problèmes de Schrödinger dynamiques: Gamma-convergence et convexité

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 15 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Léonard Monsaingeon (GFMUL Lisbon) Résumé :

Le problème de Schrödinger (~1930) consiste à inférer la trajectoire d’un système de particules Browniennes, étant données les observations de ses distributions statistiques en un temps initial et terminal. Récemment des liens profonds avec le Transport Optimal ont été mis à jour, permettant de voir le problème de Schrödinger comme une version bruitée du problème déterministe du transport optimal classique (géodésiques dans l’espace de Wasserstein des mesures de probabilités). Le niveau de bruit est déterminé par un paramètre de température $\varepsilon>0$, et l’interpolation temporelle est pilotée énergétiquement parlant par l’entropie de Boltzmann. Dans la limite de petit bruit, il est bien connu que ce problème bruité Gamma-converge vers sa contrepartie déterministe, ce qui est remarquablement utile numériquement. Dans cet exposé je discuterai une extension naturelle à des problèmes de Schrödinger géométriques dans des espaces métriques abstraits. On peut établir dans ce cadre un résultat de Gamma-convergence très général, et je montrerai comment la preuve mène également à des nouveaux résultats de convexité.


Stabilité d’ondes planes pour l’équation de Schrödinger-Langevin

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Quentin Chauleur (IRMAR, Université de Rennes 1) Résumé :

Dans cet exposé, on étudiera la stabilité des ondes planes de l’équation de Schrödinger logarithmique sur le tore, avec ou sans amortissement. Le comportement de ces solutions sera notamment illustré par des simulations numériques.


Discrétisation des inclusions différentielles du premier ordre

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 1 February 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Juliette Venel (Université Polytechnique Hauts-de-France) Résumé :

Au début de l’exposé, j’introduirai les problèmes d’évolution qui prennent la forme d’inclusions différentielles. Ensuite je préciserai un cadre théorique où celles-ci sont bien posées et enfin je proposerai un schéma numérique adapté avec un ordre de convergence égal à 1/2.


Schémas hypocoercifs pour l'équation de Fokker-Planck inhomogène

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Guillaume Dujardin (Inria Lille Nord-Europe) Résumé :

Après une courte introduction, je montrerai dans cet expose comment on peut établir, au niveau numérique, des propriétés d’hypocoercivité discretes pour des méthodes d’intégration en temps de l’équation de Fokker–Planck linéaire, qui assurent notamment la convergence exponentielle en temps long de la solution numérique vers un état d’équilibre discret. On utilisera pour cela une méthode de preuve à la Villani, adaptée au contexte discret. Il s’agit d’un travail en commun avec Frédéric Herau (Nantes) et Pauline Lafitte (CentraleSupelec).


Annulé

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 January 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ivan Moyano (Université Côte d'Azur) Résumé :
6 7 8 9 10 11 12 13 14 15 16 17