PDE and applications seminar | Nancy

Upcoming presentations

Controllability of some wave equations

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 November 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Perrin (ENS Rennes) Résumé :

In this talk, I will present controllability results for some linear and non-linear wave equations. The linear equations will be vector-valued and at different levels of regularity. I will give the main ideas of the proof of a change of regularity result. For the non-linear equations, I will consider the case of the focusing cubic Klein-Gordon equation. I will state a local controllability result around a regular solution, and a null-controllability result for scattering solutions. In the presence of damping, I will give both a positive and a negative stabilization result. I will also provide some ideas of proofs.


Hugo Parada (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hugo Parada (Université de Toulouse) Résumé :

Lorenzo Lamberti (IECL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lorenzo Lamberti (IECL) Résumé :

Le théorème de reconstruction stochastique et une EDPS hyperbolique mixte

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 December 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Bellingeri (IECL) Résumé :

Initialement considéré comme un lemme clé dans les structures de régularité, le théorème de reconstruction s’est avéré être un outil analytique très flexible pour étudier l’intégration à la fois stochastique et déterministe en dimension supérieure. Dans cet exposé, nous discuterons d’une extension particulière du théorème de reconstruction dans un contexte stochastique où la famille de distributions sous-jacente satisfait certaines conditions naturelles impliquant des incréments rectangulaires. Cela nous permet de prouver l’existence et l’unicité d’une nouvelle classe d’équations aux dérivées partielles stochastiques de type hyperbolique qui combine l’intégration stochastique standard à la Walsh et les produits de Young.

Travail en collaboration avec Hannes Kern (TU Berlin).


Ngoc Nhi Nguyen (Université de Milan)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :

Idriss Mazari (Université Paris-Dauphine)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :

Raphaël Côte (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :

Didier Bresch (Université de Savoie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :

Pierre Rouchon (Mines Paris)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :

Abonnement iCal

Past presentations

Population models with an interface region inside the domain

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 February 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pablo Alvarez Caudevilla (Madrid) Résumé :

We will discuss several models that might be regarded as migration models of populations moving from one part of a domain to the other and becoming part of the population living on the other side. Different situations assuming symmetry of movement between both sides of the domain, following a logistic model in their own environment and assuming spatial heterogeneities, are going to be discussed. Through such a common boundary both populations are coupled, acting as a permeable membrane on which their flow moves in and out. We will describe the precise interplay between the stationary solutions with respect to the parameters involved in the problem, in particular the growth rate of the populations and the coupling parameter involved on the boundary where the interchange of flux is taking place.


Analyse numérique des schémas de Boltzmann sur réseau : des questions fondamentales aux méthodes adaptatives efficientes et précises

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 February 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Thomas Bellotti (Université de Strasbourg) Résumé :

L’exposé se veut un résumé de mes travaux de thèse, qui portent une attention particulière aux schémas de Boltzmann sur réseau. Cette classe de schémas est utilisée depuis la fin des années ’80, en particulier en mécanique des fluides, et se caractérise par sa grande rapidité. Cependant, les méthodes de Boltzmann sur réseau sont très gourmandes en termes d’espace mémoire et conçues pour des maillages Cartésiens uniformes. De plus, nous manquons d’outils théoriques généraux qui permettent d’en analyser la consistance, la stabilité et enfin la convergence. Le travail s’articule autour de deux axes principaux. Le premier consiste à proposer une stratégie permettant d’appliquer les méthodes de Boltzmann sur réseau à des grilles de calcul non-uniformes adaptées dynamiquement en temps, afin de réduire le coût de calcul et de stockage. Le fait de pouvoir contrôler l’erreur commise et d’être en mesure d’employer la méthode quel que soit le schéma de Boltzmann sous-jacent sont des contraintes supplémentaires à prendre en compte. Pour cela, nous proposons d’adapter dynamiquement le réseau ainsi que d’ajuster toute méthode de Boltzmann à des maillages non-uniformes en nous appuyant sur la multirésolution. Cela a permis de proposer un cadre innovant pour des maillages mobiles en respectant les contraintes posées. Le second axe de recherche consiste à donner un cadre mathématiquement rigoureux aux méthodes de Boltzmann sur réseau, lié en particulier à leur consistance vis-à-vis des EDPs visées, leur stabilité et donc leur convergence. Pour cela, nous proposons une procédure, basée sur des résultats d’algèbre, pour éliminer les moments non-conservés de n’importe quel schéma de Boltzmann sur réseau, en le transformant en un schéma aux différences finies multi-pas sur les moments conservés. Les notions de consistance et stabilité pertinentes pour les méthodes de Boltzmann sur réseau sont donc celles des schémas aux différences finies. En particulier, tous les résultats concernant ces derniers, entre autres le théorème de Lax, se transpose naturellement aux schémas de Boltzmann sur réseau. Une étape ultérieure consiste à étudier la consistance et la stabilité directement sur le schéma de départ sans devoir calculer sa méthode aux différences finies “correspondante”. Cela permet d’en obtenir les équations modifiées et de montrer le bien-fondé des analyses de stabilité à la von Neumann couramment utilisées au sein de la communauté.

 


Peut-on entendre la forme d’une pièce ?

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tom Sprunck (Université de Strasbourg) Résumé :

Depuis son introduction par Allen et Berkley en 1972, la méthode des
sources images est l’une des techniques les plus populaires pour la
modélisation des réponses impulsionnelles (RIR) en acoustique des
salles. Cette méthode modélise chaque réflexion d’une impulsion sonore
sur les murs d’une pièce rectangulaire (ou polyédrique) comme une source
impulsionnelle de type Dirac, obtenue à partir de critères géométriques
simples. Quelques travaux récents étudient l’estimation de la forme
d’une pièce tridimensionnelle en exploitant les temps d’arrivée des
échos dans l’enregistrement de la réponse impulsionnelle de salle.
Différentes limitations apparaissent dans ce type de méthode, notamment
la localisation temporelle des échos et leur labellisation. La méthode
présentée dans cet exposé permet la reconstruction des positions 3D des
sources images sans labellisation préalable des réflexions. Le problème
inverse est posé comme un problème convexe en dimension infinie de
reconstruction parcimonieuse en 3D des sources images, l’opérateur
linéaire d’observation à inverser faisant intervenir la solution de
l’équation des ondes avec un terme source mesure. Les dimensions d’une
pièce rectangulaire peuvent ensuite être estimées précisément à l’aide
du nuage de sources images ainsi reconstruites. L’exposé se conclura par
la présentation d’une approche alternative en cours de développement
basée sur l’optimisation de forme et la méthode des solutions
fondamentales, qui devrait permettre de dépasser le cas des pièces
rectangulaires.


Observateurs adaptatifs pour l'équation des ondes et leurs discrétisations associées : formulation et analyse

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tiphaine Delaunay (Inria Paris) Résumé :
Le contexte de cette présentation est l’étude de problèmes inverses pour les phénomènes de propagation d’onde sous l’angle de la théorie du contrôle, plus précisément la théorie de l’observation. Notre objectif est de formaliser, d’analyser et de discrétiser des stratégies appelées séquentielles en assimilation de données, où les observations sont prises en compte à mesure qu’elles sont disponibles. Le système résultant appelé observateur (ou estimateur séquentiel) se stabilise sur la trajectoire observée reconstruisant alors l’ état et éventuellement des paramètres inconnus du système. Ici nous nous concentrons plus particulièrement sur la reconstruction de source au second membre d’une équation des ondes, un problème d’estimation qui peut apparaître comme intermédiaire en compléxité entre l’estimation d’ état (ou de condition initiale) et l’identification de paramètres généraux. Dans ce cadre, nous proposons de définir dans un formalisme déterministe en dimension infinie, un estimateur dit de Kalman qui estime séquentiellement le terme source à identifier. Par les outils de programmation dynamique, nous montrons que cet estimateur séquentiel est équivalent à la minimisation d’une fonctionnelle, cette équivalence nous permettant d’en proposer l’analyse de convergence sous condition d’observabilité. Nous démontrons alors des inégalités d’observabilité pour différents types de source en combinant analyse fonctionnelle, méthodes des multiplicateurs et estimations de Carleman. Ces inégalités nous informent notamment sur le caractère éventuellement mal-posé des problèmes inverses de reconstruction que nous étudions et nous permettent d’en quantifier le degré et ainsi d’adapter les régularisation proposées. Concernant les questions de discrétisation et leur analyse numérique, nous défendons l’idée de redéfinir ces observateurs associés à la minimisation de la fonctionnelle une fois que le modèle direct a été discrétisé. Cette approche discrétiser-puis-optimiser est avantageuse pour l’analyse par rapport à optimiser-puis-discrétiser. Il n’en reste pas moins que les inégalités d’observabilité doivent être étendues aux systèmes discrets. A ce propos, nous étendons en particulier des résultats de stabilisation exponentielle uniforme en la discrétisation pour des discrétisations par éléments finis de haut degré de l’équation des ondes.

Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mathias Dus Résumé :

The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation (PDE) with Neumann boundary condition. Using Barron’s representation of the solution with a probability measure defined on the set of parameter values, the
energy is minimized thanks to a gradient curve dynamic on the 2-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat, we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. In contrast to previous works, the activation function we use here is not assumed to be homogeneous to obtain global convergence of the flow. Numerical experiments are given to show the potential of the method.


Maximisation des valeurs propres du Laplacien avec condition de Neumann

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 January 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Eloi Martinet (Université Savoie Mont Blanc) Résumé :

On s’intéresse au problème d’optimisation de formes consistant à maximiser les valeurs propres du Laplacien avec conditions de Neumann homogènes. Ces valeurs propres interviennent notamment dans des problèmes acoustiques ou thermiques et sont en particulier liées à la “hot spot conjecture”. Contrairement aux valeurs propres de Dirichlet, celles associées au problème de Neumann sont de nature plutôt instable, ce qui rend le problème d’optimisation difficile. On verra comment certaines explorations numériques du problème pour des domaines du plan et de la sphère ont permis de mettre en évidence certaines propriétés des optima.

En fin de présentation, on fera une petite digression sur la capacité d’un réseau de neurones à apprendre les valeurs propres d’un opérateur.


Limites par explosion et propriété d’uniforme concentration pour les minimiseurs de Griffith

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 December 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie (Université Paris-Saclay) Résumé :


Stabilité des fronts d'invasion

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 December 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louis Garénaux (KIT) Résumé :

Les fronts monostables sont des ondes propagées qui apparaissent dans
des contextes biologiques. Dans cette présentation on présentera les
mécanismes (instabilité VS transport et poids) qui garantissent la
stabilité de ces objets, et donc leur observabilité sur des grandes
périodes de temps. Les arguments seront valables à la fois pour des
équations paraboliques (réaction-diffusion) et hyperboliques (équations
de bilan).


Optimisation de forme motivée par des questions d'aménagement urbain

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 December 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ilias Ftouhi (Universität Erlangen) Résumé :

Dans cet exposé, nous présenterons la thématique de
l’optimisation de forme et certaines de ses applications dans des
problèmes réels. Nous nous concentrerons ensuite sur quelques problèmes
motivés par la question suivante : où devrions-nous placer un parc à
l’intérieur d’un quartier donné et comment devrions-nous le concevoir
afin de le rendre le plus proche (dans un sens pertinent) à tous les
habitants du quartier ? l’exposé est basé sur des travaux en
collaboration avec Zakaria Fattah (ENSAM, Maroc) et Enrique Zuazua (FAU,
Allemagne).


Une méthode numérique basée sur le contrôle optimal pour les problèmes de transmission scalaires avec coefficients qui changent de signe.

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 November 2023 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mahran Rihani (Ecole Polytechnique) Résumé :

Dans cet exposé, je présenterai une nouvelle méthode numérique pour résoudre le problème de transmission scalaire avec des coefficients à changement de signe. En électromagnétisme, un tel problème de transmission peut se poser si le domaine d’intérêt consiste en un matériau diélectrique classique et un métal ou un métamatériau, avec, par exemple, une permittivité électrique qui est strictement négative dans le métal ou le métamatériau. La méthode est basée sur une reformulation du problème en un problème de contrôle optimal. Contrairement à d’autres approches existantes, la convergence de cette méthode est prouvée sans aucune condition restrictive sur le maillage utilisé ou sur la régularité de la solution du problème. Ces résultats sont illustrés par quelques expériences numériques.


1 2 3 4 5 6 7 8 9 10 11 12