Seminars

The main seminars take place on Monday at the following times:

  • Seminar of differential geometry: 14 pm-15 pm
  • Complex geometry seminar: 15:30 pm -16:30 pm

The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.


Upcoming presentation

Mori dreamness of blowups of P^3 along a curve

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 December 2025 14:00-15:00 Lieu : Salle 113 Oratrice ou orateur : Tiago Duarte Guerreiro Résumé :

Mori dream spaces are a special kind of varieties introduced by Hu and Keel in 2000 that enjoy very good properties with respect to the minimal model program. In this talk we explore when blowups of P^3 along smooth curves are Mori dream spaces, generalizing an early example of A. Küronya.  This is joint work with Sokratis Zikas.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 January 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 26 January 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Andrei Moroianu Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

TBA

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 February 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :

Geometric methods in computational complexity


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Past presentation

Morse index stability for Yang-Mills connections

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 October 2025 15:30-16:30 Lieu : Oratrice ou orateur : Mario Gauvrit Résumé :

We investigate the stability of the Morse index for a sequence of Yang–Mills connections on closed 4-manifolds under bubble-tree convergence. As critical points of a conformally invariant energy, Yang–Mills connections share close ties with harmonic maps in various respects. At the same time, their analysis is simpler provided one works in a suitable gauge, namely the Coulomb gauge. Motivated by applications to the construction of non-stable solutions of the Yang–Mills equations, this work extends recent methods developed by Da Lio–Gianocca–Rivière for index stability to the Yang–Mills framework, employing sharp decay estimates to show that the neck regions contribute positively to the second variation.


Revêtements Galoisiens rationnels entre variétés Calabi-Yau

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 October 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matteo Verni Résumé :

Entre variétés à canonique trivial de la même dimension il y a très peu de morphismes dominants, car ils ne peuvent pas ramifier. Par contre, il y a beaucoup d’applications rationnelles dominantes. Parmi elles, celles qui sont Galoisiennes sont les plus géométriques, car elles permettent de voir le codomaine comme un quotient du domaine par un groupe fini (à birationalités près). Nous allons examiner quelles sont les restrictions que la géométrie d’une variété projective lisse avec canonique trivial impose sur ses revêtements rationnels Galoisiens. On applique ces restrictions aux variétés hyperkählériennes pour comprendre lesquelles peuvent être obtenues comme quotients birationnels d’un groupe fini agissant sur une autre variété à canonique trivial, ce qui donne des restrictions à des questions de Alexeev et Laza.


Groupe de travail de géométrie - Variétés kählériennes compactes uniréglées II

Catégorie d'évènement : Géométrie Date/heure : 17 October 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bastien Philippe Résumé :

Feuilletages de Calabi-Yau et déformations

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 October 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Danain-Bertoncini Résumé :
En théorie des déformations, il est d’usage de chercher à construire, pour un objet géométrique donné, une famille représentant toutes ses petites déformations et ce de la manière la plus économique. Kodaira et Spencer, ayant développé la théorie des déformations de diverses structures géométriques, ont par exemple obtenu, pour toute variété complexe compacte $X$ telle que $H^2(X,TX)=0$, l’existence d’une telle famille paramétrée par un espace analytique régulier (une variété complexe). Kuranishi, parvient lui à démontrer pour toute variété complexe compacte, l’existence d’une telle famille, cette fois paramétrée par un espace analytique a priori singulier. Ce résultat motive l’étude de la régularité de l’espace de paramètre. Le théorème de Bogomolov-Tian-Todorov permet d’exhiber une classe particulière de variétés complexes compactes admettant une famille de déformation comme précédemment paramétrée par un espace analytique régulier : les variétés de Calabi-Yau.
Je présenterai au cours de mon exposé comment la théorie des déformations des variétés complexes s’adapte aux feuilletages holomorphes réguliers. J’introduirai ensuite une notion particulière de feuilletages holomorphes, inspirée de la propriété de Calabi-Yau des variétés complexes, pour obtenir un résultat du type Bogomolov-Tian-Todorov pour les feuilletages de Calabi-Yau.

Groupe de travail de géométrie - Variétés kählériennes compactes uniréglées

Catégorie d'évènement : Géométrie Date/heure : 10 October 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :

Isotrivialité des familles de courbes paramétrées par l’espace des modules des variétés abéliennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 September 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Éloan Rapion Résumé :

Mok a déterminé les lieux de base stables et augmentés associés au fibré cotangent d’un quotient compact d’un domaine symétrique borné irréductible. Dans cet exposé, on montre que son résultat se généralise aux quotients non compacts de volume fini. Cela nécessite de considérer des métriques singulières, pour l’étude desquelles on utilise les travaux de Kollár en théorie de Hodge variationnelle. On obtient comme application l’isotrivialité des familles séparables de courbes paramétrées par l’espace des modules des variétés abéliennes sur tout corps, à l’exception d’un nombre fini de caractéristiques positives.


Hyperbolicity des puissances symétriques et applications algébroïdes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 September 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Damian Brotbek Résumé :
Les propriétés d’hyperbolicité des puissances symétriques d’une variété quasi-projective X peuvent être appréhendées par l’étude des applications algébroïdes vers X, c’est à dire les applications holomorphes d’un revêtement propre du plan complexe vers X. Le point clé est alors d’établir des résultats du type “second théorème de Nevanlinna” pour ces objets.
Dans cet exposé j’introduirai ces objets et expliquerais comment les différentielles de jets peuvent être utilisées pour obtenir de tels énoncés de type Nevanlinna, raffinant des résultats connus de Yamanoi, puis je donnerais des applications de ce résultat technique, permettant notamment d’améliorer certains résultats obtenus par Cadorel, Campana et Rousseau.
Ceci est un travail en cours en collaboration avec Natalia Garcia Fritz.

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 8 September 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Auguste Hébert Résumé :

Vers une connectification des immeubles supérieurs

Soit $G$ un groupe réductif déployé sur un corps réellement valué, par exemple $G=SL_n(F)$, où $F=k((t))$ pour $n$ un entier naturel et $k$ un corps. Afin d’étudier un tel groupe, Bruhat et Tits lui ont associé un objet de nature géométrico-combinatoire $I(G)$, appelé immeuble de Bruhat-Tits, sur lequel $G$ agit. On peut alors étudier $G$ via son action sur $I(G)$ et transformer une question de nature algébrique en une question plus géométrique. Par exemple si $G=SL_2(k((t)))$, où k est un corps, son immeuble est un arbre homogène de valence $|k|+1$.

Soit maintenant $F$ un corps muni d’une valuation quelconque, c’est à dire non forcément réelle. On peut par exemple prendre $F=k((t_1))((t₂))…((t_m))$, où m est un entier naturel, qui est naturellement muni d’une valuation à valeurs dans $\mathbb{Z}^m$. Afin d’étudier des groupes réductifs déployés sur de tels corps, Bennett a introduit dans les années 90 une notion d’immeubles supérieurs qui généralise la notion d’immeubles de Bruhat-Tits. Avec Izquierdo et Loisel, nous avons associé à un tel groupe un immeuble supérieur, généralisant ainsi la construction de Bruhat et Tits. Lorsque la valuation est à valeurs réelles, l’immeuble de Bruhat-Tits est connexe et contractile, ce qui permet d’appliquer des techniques de topologie algébrique pour étudier le groupe. En revanche, lorsque la valuation n’est pas réelle (par exemple si $m\geq 2$), l’immeuble n’est pas connexe. Afin de généraliser certains résultats connus pour des valuations réelles, il semble donc utile de « connectifier » l’immeuble c’est à dire de rajouter des points pour le rendre connexe. Je parlerai d’avancées dans cette direction, obtenues avec Bravo, Izquierdo et Loisel.


Séminaire Commun - Homotopies Stables de la Sphère

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 July 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :
 1) Exposé introductif :
   – Titre : Groupes d’homotopie stable de la sphère
   – Résumé : Après avoir rappelé les groupes d’homotopie (stable) de la sphère, j’établirai un lien entre le dernier avec les structures différentielles exotiques sur les sphères topologiques. L’invariant de Kervaire entre alors en jeu. Je terminerai cet exposé avec la suite spectrale d’Adams qui est un outil important pour calculer les groupes d’homotopie stable.
2) Exposé spécialisé :
  – Titre : Théorie d’homotopie stable chromatique
  – Résumé : La théorie d’homotopie chromatique introduit une filtration sur les groupes d’homotopie stable via la localisation de Bousfield par les E-théories homologiques de Morava à l’image de la filtration des groupes formels via leurs hauteurs. Les calculs des strates de cette filtration qui sont plus abordables que le calcul direct des groupes d’homotopie stable permettent de détecter des familles infinies d’éléments de ces derniers. Je commencerai l’exposé par une introduction à la théorie générale, puis parlerai des avancés dans le calcul du deuxième niveau de la filtration chromatique et pour finir, expliquerai des applications dans la détection des structures exotiques sur les sphères.

TBA

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 June 2025 15:30-16:30 Lieu : Oratrice ou orateur : Christian Ketterer Résumé :
1 2 3 4 5 6 7 8 9 10 11 12