L'IECL

Évènements

Percolation gelée en deux dimensions

2 mars 2017 @ 10:45 – 11:45 – Nous étudions la percolation gelée et les processus de feux de foràƒÂªts. La percolation gelée est un processus de percolation oàƒÂ¹ chaque composante connexe arràƒÂªte de croàƒÂ®tre (« gàƒÂ¨le ») dàƒÂ¨s qu’elle devient infinie. Ce modàƒÂ¨le a été introduit par Aldous en 1999 sur l’arbre binaire, et nous discutons un processus analogue en deux dimensions, pour lequel […]

Une équation, trois limites

2 mars 2017 @ 09:15 – 10:15 – Le sujet de cet exposé est d’étudier l’équation de McKean-Vlasov au travers de trois limites. La première est la limite champ moyen qui stipule que le modèle de McKean-Vlasov est une bonne approximation d’un système de particules en interaction de type champ moyen quand le nombre de particules tend vers l’infini. La deuxième consiste à  […]

Formes réelles des surfaces rationnelles

27 février 2017 @ 15:30 – 16:30 – Une forme réelle d’une variété algébrique complexe $X$ est une variété réelle dont la complexification est isomorphe à  $X$. Dans cet exposé, nous nous intéresserons au problème de la finitude des classes d’isomorphisme des formes réelles des surfaces rationnelles (posé par Kharlamov pour les surfaces projectives lisses en général). Nous montrerons d’abord que toute surface […]

Regulation by integral controller for quasi-linear hyperbolic PDE

17 février 2017 @ 11:00 – 12:00 – This talk deals with the control and regulation by integral controllers for the nonlinear systems governed by scalar quasi-linear hyperbolic partial differential equations. Both the control input and the measured output are located on the boundary. The closed-loop stabilization of the linearized model with the designed integral controller is proved first by using the method […]

Zéro-cycles canoniques des variétés de Calabi-Yau de dimension 3 avec structures de fibrations

13 février 2017 @ 15:30 – 16:30 – Etant donné une surface K3 projective $S$, d’après le travail de Beauville et Voisin (2004), il existe une classe canonique $c_S$ dans le groupe de Chow des zéro-cycles $mathrm{CH}_0(S)$, qui vérifie la propriété que l’intersection des deux diviseurs, ainsi que la classe de Chern du fibré tangent, est toujours un multiple de $c_S$. On conjecture […]