Lotka-Volterra competition-diffusion system: the critical competition case

Date/heure
16 novembre 2021
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Dongyuan Xiao (Montpellier)

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

We consider the reaction-diffusion competition system

$$u_t=u_{xx}+u(1-u-v), \\
v_t=dv_{xx}+rv(1-v-u),$$

which is the so-called critical case. The associated ODE system then admits infinitely many equilibria, which makes the analysis quite intricate. We first prove the non-existence of monotone traveling waves by applying the phase plane analysis. Next, we study the long-time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the  »faster » species excludes the   »slower » species (with an identified  »spreading speed »), but also provide a sharp description of the profile of the solution, thus shedding light on a new  »bump phenomenon ».