Seminars

The main seminars take place on Monday at the following times:

  • Seminar of differential geometry: 14 pm-15 pm
  • Complex geometry seminar: 15:30 pm -16:30 pm

The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.


Upcoming presentation

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 June 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Emmanuel Humbert Résumé :

Séminaire Commun - Viet Cuong Pham

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 July 2025 14:00-16:00 Lieu : Oratrice ou orateur : Viet Cuong Pham Résumé :

Past presentation

Conjecture de la négativité bornée et constantes de Harbourne des surfaces abéliennes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 January 2016 15:30-16:00 Lieu : Oratrice ou orateur : Xavier Roulleau Résumé :

La conjecture de la négativité bornée a été formulée par l’école italienne dès le début de la théorie des surfaces algébriques. Elle prévoit que pour une surface projective complexe lisse X, il existe une constante b telle que pour toute courbe C (réduite) sur X l’auto-intersection de C vérifie C^2 >b.
Même si on sait que cette conjecture est vérifiée par une surface donnée (par exemple le plan), on ne sait en général rien dire pour un éclatement (multiple) de cette surface. Les constantes de Harbourne ont été récemment introduites pour aborder cette question.
Dans cette exposé nous ferons le point sur les connaissances actuelles et présenterons nos résultats sur les surfaces abéliennes contenant des courbes elliptiques.


Conformally flat hypersurfaces and helicoidal flat surfaces in space forms

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 January 2016 14:00-15:00 Lieu : Oratrice ou orateur : Joà£o Paulo dos Santos Résumé :

It is known that conformally flat hypersurfaces in four dimensional space forms are associated with solutions of a system of equations, known as Lam ́e’s system. In this talk, conformally flat hypersurfaces associated with invariant solutions under the symmetry group of the Lam ́e’s system are considered. Namely, three classes of solutions are presented: a) solutions given by Jacobi elliptic functions, that correspond to a new class of conformally flat hypersurfaces; b) solutions given by hyperbolic functions, that correspond to conformally flat hypersurfaces generated by helicoidal flat surfaces in the hyperbolic three space; c) solutions given by trigonometric functions, that correspond to conformally flat hypersurfaces generated by helicoidal flat surfaces in the standard three sphere. For such helicoidal flat surfaces, a classification is given in terms of their first and second fundamental forms for special parametrizations.


Endomorphismes permutables de mathbbP2

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 January 2016 14:00-15:00 Lieu : Oratrice ou orateur : Lucas Kaufmann Résumé :

On considère le problème de décrire les pairs d’endomorphismes holomorphes permutables (c.a.d. qui commutent) de l’espace projective complexe. Le cas de dimension 1 est classique et a été classifié par Fatou, Julia et Ritt sous la condition

fnneqgm pour tout n,mgeq1. (1)

En dimension quelconque un théorème de Dinh et Sibony montre que, si f et g sont des endomorphismes permutables de mathbbPk et leurs degrés satisfont dfnneqdgm pour tout n,mgeq1 alors f et g sont induits par des applications affines de mathbbCk après un quotient par un groupe discret de transformations affines. Leur conclusion n’est plus vraie si on remplace la condition sur les degrés par la condition plus faible fnneqgm pour tout n,mgeq1. Un contre exemple existe en dimension kgeq3.

Le but de cet exposé est de présenter une description des endomorphismes permutables du plan projectif sous la condition plus faible (1), ce qui complète la classification en dimension 2.


Yamabe-type invariants for open manifolds

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 8 December 2015 14:00-15:00 Lieu : Oratrice ou orateur : Nadine Grosse Résumé :

In the work of Ammann, Dahl and Humbert it has turned out that the Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant. A similar result holds for a spinorial analogon. These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. We give variational characterizations of these threshold constants, and our investigations lead to an explicit positive lower bound for the spinorial threshold constants. This is joint work with Bernd Ammann, arXiv:1502.05232.


Surfaces aléatoires finies et infinies

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jean Raimbault Résumé :

On s’intéressera d’abord à  différents modèles aléatoires de surfaces de Riemann compactes (ou de volume fini), en particulier à  leurs propriétés géométriques quand le genre tend vers l’infini. Ceci servira aussi de motivation pour introduire des modèles aléatoires de surfaces pointées de type infini.


Construction of Zollfrei metrics on 3-manifolds

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 17 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Stephan Suhr Résumé :

Guillemin calls a compact Lorentzian 3-manifold “Zollfrei” if the geodesics flow on the nonzero lightlike vectors induces a fibration by circles (especially all lightlike geodesics are closed). He conjectured that these metric can only exist on 3-manifolds covered by S2timesS1. I will explain counterexamples on every nontrivial circle bundle over a closed surface. If time permits I will discuss what additional assumptions imply the conjecture and hint at what is the right conjecture in the general case.


Structures de Hodge lacées et fibrés harmoniques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Jeremy Daniel Résumé :

La théorie de Hodge non-abélienne étudie la correspondance entre fibrés
plats et fibrés de Higgs sur une variété projective, correspondance
établie via la notion intermédiaire de fibré harmonique. On expliquera
comment la donnée d’un fibré harmonique est équivalente à  la donnée d’une
variation de structures de Hodge lacées, ces structure étant des analogues
en dimension infinie des structures de Hodge. Cette approche permet en
particulier d’associer une application des périodes à  tout fibré
harmonique, et ainsi d’imiter les techniques de théorie de Hodge
classique.


Semi-positivité du cotangent logarithmique et conjecture de Shafarevich-Viehweg [d'après Campana, Păun, Taji,...]

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 November 2015 14:00-15:00 Lieu : Oratrice ou orateur : Benoît Claudon Résumé :

Démontrée par A. Parshin et S. Arakelov au début des années 1970,
la conjecture d’hyperbolicité de Shafarevich affirme qu’une famille de
courbes de genre g ≥ 2 paramétrée par une courbe non hyperbolique
(c’est-à -dire isomorphe à  mathbbP1, mathbbC, mathbbC ou une courbe elliptique)
est automatiquement isotriviale : les modules des fibres lisses sont
constants. En dimension supérieure, les travaux de E. Viehweg sur les
modules des variétés canoniquement polarisées l’ont amené à  formuler la
généralisation suivante : si une famille de variétés canoniquement
polarisées (paramétrée par une base quasi-projective) est de variation
maximale, alors la base est de log-type général. Il s’agit donc d’une
forme d’hyperbolicité algébrique attendue pour l’espace des modules. En
adaptant des résultats dus à  Y. Miyaoka sur la semi-positivité
générique du fibré cotangent au cadre logarithmique (et orbifolde), F.
Campana et M. Păun ont récemment obtenu une réponse positive à  la
conjecture de Viehweg. Cet exposé sera également l’occasion de
donner un aperçu de la classification des orbifoldes développée par
F. Campana. C’est d’ailleurs dans ce cadre que s’énonce la forme
optimale de la conjecture de Viehweg démontrée par B. Taji.


Submanifolds with nonpositive extrinsic curvature

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 June 2015 14:00-15:00 Lieu : Oratrice ou orateur : Guilherme Machado de Freitas Résumé :

We prove that complete submanifolds, on which the Omori-Yau weak maximum principle for the Hessian holds, with low codimension and bounded by cylinders of small radius must have points rich in large positive extrinsic curvature. The lower the codimension is, the richer such points are. The smaller the radius is, the larger such curvatures are. This work unifies and generalizes several previous results on submanifolds with nonpositive extrinsic curvature. Joint work with S. Canevari and F. Manfio.


Familles d'espaces de modules de faisceaux stables sur les surfaces K3

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 June 2015 14:00-15:00 Lieu : Oratrice ou orateur : Matei Toma Résumé :