Seminars

Upcoming presentations

Surfaces minimales et surfaces de Ricci

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 November 2024 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Benoît Daniel (IÉCL) Résumé :

Les surfaces minimales sont les surfaces qui sont points critiques de la fonctionnelle d’aire à bord fixé. Elles sont caractérisées par le fait que leur courbure moyenne est nulle. Un problème posé par Ricci est de déterminer quelles surfaces riemanniennes peuvent être immergées (localement) isométriquement comme surfaces minimales de l’espace euclidien de dimension 3. Ricci a donné une caractérisation dans le cas où la surface est à courbure strictement négative. A. et S. Moroianu ont donné une caractérisation complète sans cette hypothèse et ont introduit la notion de surface de Ricci. Nous verrons des généralisations de cette notion, nous intéresserons aux surfaces de Ricci généralisées compactes et verrons le lien avec les surfaces à courbure constante et singularités coniques. Il s’agit d’un travail en commun avec Yiming Zang.


Un crible minorant effectif pour les entiers friables

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 November 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Adrien Mounier (Aix-Marseille Université) Résumé :

Soient $\mathcal{A}$ un ensemble fini d’entiers naturels non-nuls et $y \geq 1$. Nous donnons une minoration effective du cardinal de l’ensemble $\{n\in\mathcal{A} ; p|n \Rightarrow p \leq y\}$ sous la condition d’une bonne connaissance du niveau de répartition de l’ensemble $\mathcal{A}$. Quelques conséquences seront ensuite abordées, dont une application aux valeurs friables de polynômes ou de formes binaires à coefficients entiers, puis une application aux entiers friables voisins.


Journée à l'honneur de David Vogan

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 December 2024 00:00-23:59 Lieu : Oratrice ou orateur : Résumé :

Une version effective du théorème des nombres premiers de Lu

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 5 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Vincent Gozé (Université du Littoral Côte d'Opale) Résumé :

Soit $\pi(x)$ le nombre de nombres premiers dans l’intervalle $[1,x]$. Nous savons depuis Euclide que $\pi(x)$ tend vers l’infini, mais à quelle vitesse ?  La réponse à cette question fut obtenue pour la première fois en 1896 par Jacques Hadamard et Charles-Jean de la Vallée Poussin qui démontrèrent, de manière indépendante, le théorème des nombres premiers: \[\pi(x)\sim \frac{x}{\log x}\quad(x\to \infty).\]
La démonstration de Hadamard et La Vallée Poussin utilise principalement les propriétés de la fonction zêta de Riemann et donc l’analyse complexe. Ce n’est qu’en 1949 qu’Erdős et Selberg publièrent indépendamment la première démonstration élémentaire (utilisant uniquement l’analyse réelle) du théorème des nombres premiers. Dans cet exposé, nous présenterons le développement historique des démonstrations élémentaires du théorème des nombres premiers puis nous donnerons une version effective du théorème des nombres premiers de Lu qui, à ce jour, donne le meilleur terme d’erreur en utilisant des méthodes élémentaires.


Pause pour arbre de Noël GNC à Orléans

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 December 2024 14:15-15:15 Lieu : Oratrice ou orateur : Résumé :

Sur une généralisation des puissances d'un entier (``powered numbers''). Application à un problème additif.

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 December 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Olivier Robert (Institut Camille Jordan) Résumé :

La notion de fonction puissance d’un nombre entier, introduite par Mazur (2000) fait intervenir le noyau (ou radical) d’un entier. Cette fonction lui  permet de définir une généralisation des puissances (“powered numbers”). Après avoir rappelé des résultats récents sur le noyau d’un entier, nous présenterons des résultats nouveaux sur la fonction de répartition des puissances généralisées, ainsi que sur un problème additif concernant la représentation d’un entier comme somme de puissances généralisées. Ce travail a été réalisé en collaboration avec J. Brüdern.


Pierre Bieliavksy -- titre à venir

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 13 February 2025 14:14-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bieliavsky (Louvain-la-Neuve) Résumé :

Past presentations

Quantification des champs à  la Hopf-Fock

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 11 June 2020 15:30-16:30 Lieu : Oratrice ou orateur : Alessandra Frabetti Résumé :

La quantification par déformation d’une théorie de champs se fait en deux étapes, d’abord pour une théorie libre à  partir de la structure de Poisson donnée par le crochet de Peierls associé au propagateur de Wightmann, ensuite pour la théorie en intéraction avec une ultérieur déformation associée au propagateur de Feynman, qui produit des ambiguités gérées par le groupe de renormalisation. Chaque étape de ce programme nécessite l’étude des fonctionnelles pouvant être déformées, compliquée par l’apparition de distributions singulières avec fronts d’ondes plus au moins adaptés aux opérations réquises. Les travaux en pAQFT dans les années 1990 et 2000 décrivent ces étapes de façon rigoureuse et complète (cf. K. Fredenhagen, M. Duetsch, R. Brunetti, S. Hollands, R.M. Wald, K. Rejzner, C. Brouder, N.V. Dang, Y. Dabrowski, etc). Avec C. Brouder, B. Fauser et R. Oeckl, nous avons montré en 2004 que si on se restreint à  des fonctionnelles régulières (et on oublie donc les problèmes analytiques), ces déformations coincident avec celles purement algébriques d’une structure de Hopf-comodule sur les fonctionnels, obtenues à  l’aide de deux couplages de Laplace définis par les propagateurs (et qui remplecent donc les crochets de Poisson dans le cadre des déformations d’algèbres de Hopf à  la Drinfeld ou à  la Majid). Les premiers résultats étaient complètement formels, et ils ont été précisés au sens géometrique par R. Borcherds en 2011, et complétés au sens algébrique et analytique par E. Herscovich en 2017. Dans cet exposé, je présente les grandes lignes de ce point de vue.


The Chern character of Fredholm modules over dg Algebras and localisation on loop spaces

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 28 May 2020 14:15-15:45 Lieu : Oratrice ou orateur : Batu Gueneysu Résumé :

Résumé


An image characterization for the Poisson transform on homogeneous line bundles over noncompact Grassmann manifolds

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 9 April 2020 14:15-15:15 Lieu : Oratrice ou orateur : Abdelhamid Boussejra Résumé :

Résumé


Recent results on homotopy co-moments in multisymplectic geometry

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 2 April 2020 14:15-15:15 Lieu : Oratrice ou orateur : Leonid Ryvkin Résumé :

Résumé


Reporté

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 26 March 2020 14:15-15:15 Lieu : Oratrice ou orateur : Claire Debord Résumé :

Résumé


An image characterization for the Poisson transform on homogeneous line bundles over Noncompact Complex Grassmann Manifolds. Lien externe[Résumé] - Reporté

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 March 2020 15:30-16:30 Lieu : Oratrice ou orateur : Abdelhamid Boussejra Résumé :

Let (X=G/K) be a noncompact complex Grassmann manifold of rank (r). Let (tau_l) be a character of (K), and (Ktimes_M{C}) the homogeneous line bundle associated with (tau_{l_{mid M}}). We give an image characterization for the Poisson transform (P_{lambda,l}) of (L^2)-sections of (Ktimes_M{C}). More precisely, for real and regular spectral parameter (lambda) in (mathfrak{a}^ast) we prove that (P_{lambda,l}) is an isomorphism from (L^2(Ktimes_M{C})) onto a space of joint eigensections (F) of the algebra of (G)-invariant differential operators on (Gtimes_K{C}) that satisfy (displaystylesup_{R>1}frac{1}{R^r}int_{B(R)}mid F(g)mid^2, {rm d}g<infty.) This generalizes a conjecture by Strichartz which corresponds to (tau_l) trivial.\


Hyperkähler Lie groups with abelian complex structures[Résumé] - Reporté

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 19 March 2020 14:15-15:15 Lieu : Oratrice ou orateur : Ignacio Bajo Résumé :

We consider Lie groups $G$ endowed with a pair of anticommuting left-invariant abelian complex structures $(J_1,J_2)$ and a left-invariant, possibly indefinite, metric $g$ such that $(G,J_1,J_2,g)$ results to be a hyperkähler manifold. We study the algebraic structure and geometric properties of such Lie groups with an abelian hyperkähler structure. It results that such groups are always 3-step nilpotent and there is a correspondence between the associated hyperkähler Lie algebras and certain triples $(V,Omega, J_s)$ defined for a complex (associative) commutative algebra $V$ such that $V^3={0}$. This correspondence allows us to compute the Riemannian curvature of the pseudo-metric, describe the holonomy algebra and show that hyperkähler Lie groups with abelian complex structures are complete and locally symmetric. This clearly implies that every simply-connected Lie group endowed with an abelian hyperkähler structure is actually a symmetric space. In constrast to the definite case, there exist non-flat examples of abelian hyperkähler Lie groups; they cannot be 2-step nilpotent and their dimension is always equal to or greater than 16. Moreover, using the triple description, we classify up to Lie algebra isomorphism all Lie algebras $g$ admitting an abelian hyperkähler structure for $dimgle 12$. Some remarks on their classification up to triholomorphic symplectomorphism will also be mentioned. [BS_HK] I. Bajo, E. Sanmart'{i}n, “Indefinite hyperkähler metrics on Lie groups with abelian complex structures”, 2019, to appear in Transformation Groups.


Groupoïdes et $K$-théorie

Catégorie d'évènement : Groupe de travail Géométrie non commutative Date/heure : 12 March 2020 15:00-17:00 Lieu : Oratrice ou orateur : Fabien Bessière Résumé :

Small discrepancy sequences over the function fields

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 12 March 2020 14:30-15:30 Lieu : Oratrice ou orateur : Oleksiy Klurman Résumé :

Résumé


Les 12 et 13 mars 2020.

Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 12 March 2020 08:00-18:00 Lieu : Oratrice ou orateur : Journées SL_2 R (en l'honneur du 80e anniversaire de Jacques Faraut) Résumé :

www.iecl.univ-lorraine.fr/~Khalid.Koufany/SL2R2020/programme.html