Upcoming presentations
Résolution du problème d'approximation par dilatations de Erdős
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 3 April 2025 14:15-15:15 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :Motivé par ses travaux et ceux de Behrend dans les années 30 concernant les ensembles primitifs d’entiers, Erdős conjectura en 1948 que si
Dans cet exposé, je présenterai un travail récent, en collaboration avec Dimitris Koukoulopoulos et Jared Lichtman, où l’on démontre cette conjecture.
Grands ensembles évitant certaines configurations
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 24 April 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Alexandre Bailleul (ENS Paris-Saclay) Résumé :En se laissant guider par l’exemple des ensembles de Sidon (ensembles de nombres dont les sommes de deux éléments sont uniques, très étudiés en combinatoire additive), je présenterai des résultats récents, en collaboration avec R. Riblet, où des techniques de théorie des ensembles permettent de construire des ensembles “grands” en certains sens (cardinalité, mesure ou dimension) tout en étant “épars” car évitant des configurations prescrites (pas de relation linéaire, ou ne contenant pas de parallélogramme, etc.). Des questions subtiles en lien avec l’axiome du choix seront évoquées.
Pseudogroups and geometric structures
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 May 2025 14:15-15:15 Lieu : Salle de réunion Metz (ARC-027) Oratrice ou orateur : Francesco Cattafi (Würzburg) Résumé :This philosophy can be made precise at various levels of generality (depending on the definition of “geometric structure”) and using different tools/methods. In this talk I will present some aspects of a new framework, which includes previous formalisms (e.g. G-structures or Cartan geometries) and allows us to prove integrability theorems.
A main novelty of this point of view consists of the fact that it uncovers the (beautiful!) hidden structures behind Lie pseudogroups and geometric structures. Indeed, the relevant objects which make this approach work are Lie groupoids endowed with a multiplicative “PDE-structure”, their principal actions, and the related Morita theory. Poisson geometry provides the guiding principle to understand those objects, which are directly inspired from, respectively, symplectic groupoids, principal Hamiltonian bundles, and symplectic Morita equivalence.
This is based on a forthcoming book written jointly with Luca Accornero, Marius Crainic and María Amelia Salazar.
A venir
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 May 2025 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Athanasios Sourmelidis (CNRS, Lille) Résumé :Antonio Miti - titre à venir
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 5 June 2025 14:15-15:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Miti (Rome) Résumé :Past presentations
On probabilistic generalizations of the Nyman-Beurling criterion for the Zeta function
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 18 November 2021 10:45-11:45 Lieu : Salle Döblin Oratrice ou orateur : Sébastien Darses (Aix-Marseille Université) - Séminaire commun ATN+PS Résumé :Séminaire commun avec l’équipe PS
One of the seemingly innocent reformulations of the terrifying Riemann Hypothesis (RH) is the Nyman-Beurling criterion: The indicator function of (0,1) can be linearly approximated in a L^2 space by dilations of the fractional part function. Randomizing these dilations generates new structures and criteria for RH, regularizing very intricate ones. One other possible nice feature is to consider polynomials instead of Dirichlet polynomials for the approximations. How then are the huge difficulties reallocated? The answers are quite surprising!
The talk will be very accessible, especially for graduate students.
Joint work with F. Alouges and E. Hillion.
Pas d’exposé (Journées SL2R)
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 18 November 2021 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :Pas d’exposé en raison des journées SL2R à Strasbourg :
http://irma.math.unistra.fr/article1841.html
Crochets dérivés
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 17 November 2021 15:00-17:00 Lieu : Salle 046 Metz Oratrice ou orateur : Philippe Bonneau Résumé :L’exposé expliquera les points clefs de l’article suivant d’Yvette Kosmann-Schwarzbach :
“Derived brackets”, Letters in Math. Phys. 69, 61-87 (2004).
Restriction des représentations unitaires irréductibles de à un sous-groupe parabolique
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse
Date/heure : 4 November 2021 14:15-15:15
Lieu : Salle de séminaires Metz
Oratrice ou orateur : Gang Liu (IECL)
Résumé : Soient
Groupes gradués et algèbres de Clifford
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 October 2021 15:45-16:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Wolfgang Bertram (IECL) Résumé :Construction d'un nombre normal tel que son inverse soit également normal
Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 October 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Manfred Madritsch (IECL) Résumé :Soit
Michel Mendés France a demandé s’il existe un nombre réel
Il s’agit d’un travail en commun avec Verónica Becher de l’Université de Buenos Aires.
Une approche fonctorielle du calcul différentiel
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 21 October 2021 14:15-15:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Haut (IECL) Résumé :Au cœur du calcul différentiel se trouve la notion de quotients de différences et de leur prolongation continue, ce qui peut être défini dans des modules sur des anneaux topologiques assez généraux. L’étude de ces quotients et de leurs domaines amène naturellement à la définition d’une famille de foncteurs « tangents » (dont chacun vient avec une transformation naturelle appelée « ancre »). Appliquer ces différents foncteurs aux opérations de l’anneau de base fournit une famille d’ « algèbres tangentes », et les foncteurs tangents peuvent être réinterprétés comme des généralisations des extensions scalaires aux algèbres associées. Une famille de transformations naturelles entre les foncteurs tangents peut être retenue, qui donne lieu à une famille de morphismes entre algèbres tangentes, et fait émerger une catégorie de telles algèbres. Changeant de point de vue sur la naturalité, on peut ensuite définir les domaines de fonctions lisses comme des foncteurs depuis la catégorie des algèbres tangentes, et les fonctions lisses elles-mêmes comme des transformations naturelles entre ces foncteurs, établissant un plongement d’une « catégorie du calcul différentiel » dans une catégorie de foncteurs.
Référence : https://arxiv.org/abs/2006.04452
Approche quotient et approche de Baez-Rogers aux crochets en théorie de champs classique
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 20 October 2021 15:00-17:30 Lieu : Salle 046 Metz Oratrice ou orateur : Gabriel Sevestre et Maxime Wagner Résumé :Introduction au problème des crochets de Poisson en théorie de champs classique (Tilmann Wurzbacher)
Approche quotient aux formes et champs hamiltoniens (Maxime Wagner)
Approche Lie infinie à la Baez-Rogers-Stasheff (Gabriel Sevestre)
Coarse geometry, K-théorie et paires de Hecke
Catégorie d'évènement : Séminaire Théorie de Lie, Géométrie et Analyse Date/heure : 15 October 2021 16:00-17:00 Lieu : Oratrice ou orateur : Clément Dell'Aiera Résumé :A une paire de Hecke est associée un groupe localement compact totalement discontinu, et un sous groupe compact ouvert. C’est sa complétion de Schlichting, déjà utilisée par Tzanev pour construire des facteurs de type III.
Ensembles de Sidon
Catégorie d'évènement : Analyse et théorie des nombres Date/heure : 14 October 2021 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Robin Riblet (IECL) Résumé :Un ensemble de Sidon d’un semi-groupe est un ensemble dont toutes les sommes de deux éléments sont distinctes. Des travaux de Bose, Chowla et Erdős établissent que le cardinal maximal d’un ensemble de Sidon dans un intervalle d’entiers de cardinal