Séminaire de Théorie des Nombres de Nancy-Metz

Exposés à venir

Abonnement iCal

Archives

Bornes inférieures pour le nombre maximal de points rationnels des courbes sur les corps finis

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 4 avril 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Elisa Lorenzo Garcia (Université de Neuchâtel) Résumé :
Pour un genre $g>0$ donné, nous donnons des bornes inférieures pour le nombre maximal de points rationnels d’une courbe projective lisse absolument irréductible de genre $g$ sur le corps fini $\mathbb{F}_q$.
D’abord, comme conséquence de la théorie de Katz-Sarnak, on obtient pour tout $g>0$ donné, tout $\epsilon>0$ et tout $q$ suffisamment grand, l’existence d’une courbe de genre $g$ sur $\mathbb{F}_q$ avec au moins $1+q+(2g−\epsilon)\sqrt{q}$ points rationnels.
Puis en utilisant les sommes de puissances des traces de Frobenius des courbes hyperelliptiques, on obtient des bornes inférieures pour lesquelles on peut controler le q le plus petit pour lequel elles sont valides.
Enfin, on donne une construction explicite qui produit des courbes de genre $g$ sur $\mathbb{F}_q$ avec au moins $1+q+4\sqrt{q}-32$ points.
En plus, on ira au-delà de la théorie de Katz-Sarnak pour essayer d’expliquer les asymétries observées dans la distribution du nombre de points.
Celui-ci est un travail conjoint avec J. Bergström, E. Howe et C. Ritzenthaler

Changements de signes de sommes de fonctions multiplicatives

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 28 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Youness Lamzouri (IECL) Résumé :

Dans cet exposé, nous présenterons une méthode simple et efficace, qui a ses origines dans les travaux de Baker et Montgomery, et qui permet de produire des changements de signe de sommes de certaines fonctions multiplicatives réelles. Nous illustrons ensuite deux applications aux sommes de caractères de Dirichlet quadratiques ainsi qu’aux sommes de fonctions multiplicatives aléatoires de Rademacher. Ceci est basé sur un travail en commun avec O. Klurman et M. Munsch.


Weyl sums with Multiplicative Coefficients and Joint Equidistribution

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cynthia Bortolotto (ETH Zurich) Résumé :

In 1964, Hooley proved that for an irreducible polynomial $p$ in $\mathbb{Z}[x]$, the ratios $v/n$ for $v$ roots of the polynomial $p$ modulo $n$, are equidistributed modulo $1$. We prove joint equidistribution of these roots of polynomial congruences and polynomial values. As part of the proof, we generalize a result of Montgomery and Vaughan regarding exponential sums with multiplicative coefficients to the setting of Weyl sums.


Moyenne de la fonction Delta d’Erdős-Hooley

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 14 mars 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Régis de la Bretèche (Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris Cité) Résumé :

La fonction Delta d’Erdős-Hooley mesure la concentration des diviseurs d’un entier dans un intervalle dyadique. Récemment, Ford Koukoulopoulos et Tao ont amélioré l’encadrement de l’ordre moyen de cette fonction dû à Hall et Tenenbaum. Nous expliquerons les idées nouvelles de ces auteurs et expliquerons comment dans un travail en collaboration avec Gérald Tenenbaum nous avons précisé leur encadrement.


Expansion, divisibilité et parité

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 15 février 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Harald Helfgott (CNRS, Institut de Mathématiques de Jussieu) Résumé :
Nous discuterons d’un graphe qui encode les propriétés de divisibilité des entiers par les nombres premiers. Nous montrons que ce graphe possède une propriété d’expansion locale forte p. p.  (presque partout). Nous obtenons plusieurs conséquences en théorie des nombres, au-delà de la traditionnelle barrière de parité, en combinant nos résultats avec ceux de Matomäki-Radziwill. Par exemple: pour la fonction de Liouville $\lambda$ (il s’agit de la fonction complètement multiplicative avec $\lambda(p)=-1$ pour chaque premier $p$), $$\frac{1}{\log x} \sum_{n\leq x} \frac{\lambda(n) \lambda(n+1)}{n} = O\left(\frac{1}{\sqrt{\log\log x}}\right)$$
ce qui est plus fort que les résultats bien connus de Tao et Tao-Teräväinen. Nous montrons aussi, par exemple, que $\lambda(n+1)$ a pour moyenne $0$ à presque toutes les échelles quand on suppose que $n$ a un nombre spécifique $\Omega(n)=k$ de diviseurs premiers, pour toute valeur « populaire » de $k$ (c-à-d $k=\log\log N+ O(\sqrt{\log\log N})$  pour $n\leq N$).

Moments dans le théorème de Chebotarev

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 8 février 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Florent Jouve (Institut de Mathématiques de Bordeaux) Résumé :

Dans un travail en commun avec Régis de La Bretèche et Daniel Fiorilli, on considère certains moments pondérés correspondant à la distribution des substitutions de Frobenius dans les classes de conjugaison des groupes de Galois d’extensions normales des rationnels. La question s’inspire de résultats de Hooley et de progrès récents de La Bretèche–Fiorilli concernant les moments de la distribution des nombres premiers en progression arithmétique. Tout comme dans ces travaux antérieurs, nos résultats sont conditionnels à GRH et confirment que les moments considérés devraient être gaussiens. Si le temps le permet, nous mentionnerons une autre notion de moments pour laquelle certaines structures de groupes de Galois excluent un comportement gaussien.


Maxima of a random model of the Riemann zeta function on longer intervals (and branching random walks)

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 1 février 2024 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lisa Hartung (Johannes Gutenberg University Mainz) Résumé :
We study the maximum of a random model for the Riemann zeta function (on the critical line at height T) on the interval $[-(\log T)^\theta,(\log T)^\theta]$, where $\theta= (\log \log T)^{-a}$, with $0<a<1$.  We obtain the leading order as well as the logarithmic correction of the maximum.
As it turns out, a good toy model is a collection of independent BRWs, where the number of independent copies depends on $\theta$. In this talk I will try to motivate our results by mainly focusing on this toy model. The talk is based on joint work in progress with L.-P. Arguin and G. Dubach.

Séminaire commun avec l’équipe Probabilités et Statistique.


Lemme de Hensel pour les fonctions continues $p$-adiques

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 25 janvier 2024 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Thomas Stoll (IECL) Résumé :

Le lemme de Hensel pour les fonctions polynomiales $p$-adiques $f: \mathbb{Z}_p\rightarrow \mathbb{Z}_p$ permet de déduire l’existence d’une solution de $f(x)=0$ à partir de l’existence d’une solution approchée. E. Y. Axelsson et A. Khrennikov (2016) ont étendu le lemme de Hensel aux fonctions $1$- et $p^\alpha$-Lipschitz et ont posé la question concernant une généralisation de leur résultat aux fonctions continues $p$-adiques générales. L’objet de cet exposé est de présenter cette généralisation, obtenue dans un travail récent en collaboration avec H. Kaneko.


Nombres premiers réversibles

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 21 décembre 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Cathy Swaenepoel (Institut de Mathématiques de Jussieu) Résumé :

Les propriétés des chiffres des nombres premiers et de diverses autres suites de nombres entiers ont suscité beaucoup d’intérêt ces dernières années. Pour tout nombre entier naturel $k$, nous notons $\overleftarrow{k}$ le miroir de $k$ en base 2, défini par
$$
\overleftarrow{k} = \sum_{j=0}^{n-1} \varepsilon_j\,2^{n-1-j}
\quad
\mbox{ où }
\quad
k = \sum_{j=0}^{n-1} \varepsilon_{j} \,2^j
$$
avec $\varepsilon_j \in \{0,1\}$, $j\in\{0, \ldots, n-1\}$, $ \varepsilon_{n-1} = 1$. Une question naturelle est d’estimer le nombre de nombres premiers $p\in \left[2^{n-1},2^n\right[$ tels que $\overleftarrow{p}$ est également premier. Nous présenterons un résultat fournissant une majoration de l’ordre de grandeur attendu. Notre méthode est fondée sur une technique de crible. Elle nous permet aussi d’obtenir une bonne minoration du nombre de nombres entiers $k$ tels que $k$ et $\overleftarrow{k}$ ont au plus 8 facteurs premiers (comptés avec multiplicité). Enfin, nous présenterons une formule asymptotique pour le nombre de nombres entiers $k\in \left[2^{n-1},2^n\right[$ tels que $k$ et $\overleftarrow{k}$ sont sans facteur carré.

Il s’agit d’un travail en commun avec Cécile Dartyge, Bruno Martin, Joël Rivat et Igor Shparlinski.


Zéros de combinaisons linéaires de fonctions $L$ de Dirichlet sur la droite critique

Catégorie d'évènement : Séminaire de Théorie des Nombres de Nancy-Metz Date/heure : 14 décembre 2023 14:30-15:30 Lieu : Salle Döblin Oratrice ou orateur : Jérémy Dousselin (IECL) Résumé :

Soient $N\geq 1$ et $\chi_1,…,\chi_N$ des caractères de Dirichlet primitifs, pairs et deux à deux distincts, de conducteur $q_1$, …, $q_N$ respectivement. Posons

\[F(s):=\sum_{j=1}^N c_j\varepsilon_jq_j^{s/2}L(s,\chi_j),\]

où $(\varepsilon_j)$ sont des complexes de module 1 tels que $F$ satisfasse une équation fonctionnelle et $c_j\in\mathbb R^*$. Nous distinguons les zéros de $F$ en deux catégories : des zéros dits triviaux, impliqués par cette équation fonctionnelle, et des zéros dits non-triviaux, confinés dans une bande verticale $V$. Nous notons $N(T)$ le nombre de zéros de $F$ dans le rectangle $\{z\in V:\Im(z)\in[0,T]\}$ et $N_0(T)$ le nombre de ces zéros étant sur la droite critique.

A la fin des années 90, Selberg donna les grandes lignes d’un raisonnement prouvant qu’une proportion positive de zéros non-triviaux de $F$ sont sur la droite critique, en établissant que

\[\kappa_F:=\liminf_T\frac{N_0(2T)-N_0(T)}{N(2T)-N(T)}\geq \frac c{N^2}\]

pour un $c>0$. Nous proposons alors d’améliorer et d’expliciter cette minoration, en démontrant en particulier que

\[\kappa_F\geq \frac{2.16\times 10^{-6}}{N\log N},\]

pour tout $N$ assez grand.


1 2 3 4 5 6 7 8 9 10 11 12