The main seminars take place on Monday at the following times:
- Seminar of differential geometry: 14 pm-15 pm
- Complex geometry seminar: 15:30 pm -16:30 pm
The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.
Upcoming presentation
Divisorial elementary Mori contractions of maximal length
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 February 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Dewer Résumé :An elementary Mori contraction from a smooth variety $X$ is a morphism with connected fibres onto a normal variety which contracts a single extremal ray of $K_X$-negative curves. Thanks to a result by P. Ionescu and J. Wisniewsi, we know that the length of such a contraction (i.e. the minimal degree $-K_X$ can have on contracted rational curves) is bounded from above. In a paper which dates back to 2013, A. Höring and C. Novelli studied elementary Mori contractions of maximal length, that is, elementary Mori contractions for which the upper bound is met. Their main result exhibits the structure of a projective bundle for the locus of positive-dimensional fibres up to a birational modification. In my talk, I will move to the submaximal case, in other words the case where the length equals its upper bound minus one, and focus on the divisorial case.
Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentation
Fibré vectoriel pseudo-effectif et fibré numériquement plat
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 November 2021 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Xiaojun Wu Résumé :Dans cet exposé, je présenterai la généralisation de la notion de fibré en droites pseudo-effectif en rang supérieur. En particulier, je présenterai la preuve du fait qu’un fibré vectoriel pseudo-effectif au sens fort avec la première classe de Chern nulle sur une variété kählerienne compacte est numériqument plat. La preuve est basée sur une construction naturelle d’un courant positif dans la première classe de Chern qui s’applique à la grande généralité. Le cas projectif était démontré par Campana-Cao-Matsumura et Hosono-Iwai-Matsumura.Comme conséquence, le fibré tangent ou cotangent de variétés de Calabi-Yau ou symplectique holomorphe irréductible n’est pas pseudo-effectif au sens fort.
Sur l'ergodicité du flot des repères des variétés à courbure négative
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 22 November 2021 15:30-16:30 Lieu : Oratrice ou orateur : Thibault Lefeuvre Résumé :Le flot des repères des variétés à courbure sectionnelle négative est l’un des premiers exemples historiques de dynamique partiellement hyperbolique. Il est connu que ce flot est ergodique sur les variétés hyperboliques, et les variétés de dimension impaire non égale à 7 ; à l’inverse, ce flot n’est pas ergodique sur les variétés kähleriennes (e.g. variétés hyperboliques complexes). Brin a donc naturellement conjecturé dans les années 70 que les variétés paires à courbure 1/4-pincées devaient avoir un flot des repères ergodiques mais cette question est encore aujourd’hui très largement ouverte. Dans cet exposé, j’expliquerai de récents progrès obtenus sur cette conjecture : je montrerai que les variétés de dimension 4k+2 (resp. 4k) et ~0.27-pincées (resp. ~0.55) ont un flot des repères ergodique. Cette nouvelle approche combine essentiellement trois outils : 1) des outils de dynamique hyperbolique (groupe de transitivité, représentation du monoïde de Parry), 2) la topologie des groupes de structure sur les sphères, 3) de l’analyse harmonique sur le fibré unitaire tangent (identités de Pestov et/ou de Weitzenböck tordues). Travail en commun avec Mihajlo Cekić, Andrei Moroianu, Uwe Semmelmann.
Théorie de Gromov-Witten des intersections complètes
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 November 2021 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hülya Argüz Résumé :Je vais décrire un algorithme calculant les invariants de Gromov-Witten des intersections complètes dans l’espace projectif, en tout genre et avec des insertions arbitraires. L’idée principale est de montrer que les invariants avec insertions de classes de cohomologie primitives sont contrôlés par la monodromie et des invariants définis sans insertions primitives mais avec des noeuds imposés sur les courbes. Pour calculer ces invariants de Gromov-Witten nodaux, nous introduisons la notion nouvelle d’invariants de Gromov-Witten relatifs nodaux. C’est un travail en commun avec Pierrick Bousseau, Rahul Pandharipande, et Dimitri Zvonkine (arxiv:2109.13323).
À la recherche de tores plats, une approche diploïde - Séminaire Commun de Géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 November 2021 14:00-16:00 Lieu : Oratrice ou orateur : Alba Malaga Résumé :On peut obtenir un tore en recollant abstraitement les deux paires de côtés opposés d’un carré, sans le déformer. Un tel tore vient alors naturellement fourni d’une métrique à courbure constante nulle, c’est pourquoi on l’appelle tore plat carré. Cette construction se généralise en prenant n’importe quel parallélogramme à la place du carré. Modulo une relation d’équivalence, tous les tores plats vivent alors sur la courbe modulaire.
Dans cet exposé, je présenterai une construction assez simple qui permet d’obtenir tous les tores de la courbe modulaire comme des polyèdres et j’esquisserai une demonstration de ce fait. Je présenterai aussi des variations de la construction qui permettent d’obtenir des exemples de réalisations polyédrales de surfaces de translation.Ceci est un travail en collaboration avec Samuel Lelièvre (Orsay) et Pierre Arnoux (Marseille).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Comme tous les “Séminaires communs de géométrie”, ce séminaire comprend deux séances : de 14h à 15h45, un exposé “colloquium” s’adressant à tous les mathématiciens, puis de 15h15 à 16h un exposé “recherche” qui approfondira ce qui aura été présenté au premier exposé.
The twisted cotangent bundle of a Hyperkähler manifold
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 8 November 2021 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fabrizio Anella Résumé :Let $X$ be a complex projective Hyperkähler manifold. By a recent result of Höring and Peternell, the cotangent bundle of $X$ is not pseudoeffective. One way to measure this negativity more precisely is to give sufficient conditions on an ample line bundle $A$ such that the twist $\Omega_X \otimes A$ is pseudoeffective. I will give a sufficient condition that depends only on the deformation’s type of $X$. Then I will discuss when this sufficient condition is also necessary. At the end I’ll briefly present some recent progress on the case of degree two K3 surfaces. This is a joint work with Andreas Höring.
Vacances
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 25 October 2021 15:30-15:30 Lieu : Oratrice ou orateur : Résumé :Automorphismes symplectiques des variétés hyper-kählériennes
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 18 October 2021 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Davide Veniani Résumé :En 1988 Mukai classifia les groupes finis d’automorphismes symplectiques sur une surface K3, en exhibant 11 groupes maximaux, tous sous-groupes du groupe simple de Mathieu M_23. Plus tard, la démonstration de Mukai a été simplifiée par Xiao e Kondo.
Les variétés hyper-kählériennes sont une généralisation des surfaces K3 en dimension supérieure. Le problème de classifier leurs automorphismes symplectiques est encore ouvert.
Dans mon exposé je parlerai des principales techniques et des résultats établis par Camere, Mongardi, Höhn et Mason sur les automorphismes des schémas de Hilbert ponctuels sur une surface K3 et par Grossi, Onorati et moi sur les variétés d’O’Grady de dimension 6.
Cérémonie de Doctorat Honoris Causa - Thomas Peternell
Catégorie d'évènement : Géométrie Date/heure : 12 October 2021 00:00-00:00 Lieu : Oratrice ou orateur : Résumé :REPORTE à une date ultérieure
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 11 October 2021 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Simone Murro Résumé :Paracausal deformations of Lorentzian metrics and their consequences in quantum field theory
It is well-known that the space of Riemannian metrics on a smooth manifold is path-connected. Indeed, the convex combination of Riemannian metrics produces a Riemannian metric. This is not true, for the space of Lorentzian metric and a natural question pop up: Are there some natural operations that can be used to produce Lorentzian metrics starting from Lorentzian metrics?
This talk aims to provide sufficient conditions for some kind of linear combination of Lorentzian metrics to be a Lorentzian metric. In particular, the notion of paracausal deformation of a Lorentzian metric will be introduced and discussed in detail. After few characterizations, I will discuss shortly the consequences in quantum field theory.
On the irrationality of moduli spaces of K3 surfaces
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 11 October 2021 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ignacio Barros Résumé :I will talk about the problem of determining the birational complexity of moduli spaces of curves and K3 surfaces. I will recall some recently introduced invariants that measure irrationality and talk about what is known for these moduli spaces. In the second half I will report on joint work with D. Agostini and K.-W. Lai, where we study how the degrees of irrationality of the moduli spaces of polarized K3 surfaces grow with respect to the genus g. We provide polynomial bounds. The proof relies on Kudla’s modularity conjecture for Shimura varieties of orthogonal type. For special genera we explot the deep Hodge theoretic relation between K3 surfaces and special hyperkähler fourfolds to obtain much sharper bounds.