Seminars

Partial differential equations seminars in Metz and Nancy

The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy

During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).

Upcoming presentations

Ruikang Liang (LJLL)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ruikang Liang (LJLL) Résumé :

Anne-Sophie de Suzzoni (Polytechnique)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anne-Sophie de Suzzoni (Polytechnique) Résumé :

Groupe de travail : Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin's law through the vertical displacements

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 23 May 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :

The main objective of this work is to study the stability of a linear one-dimensional thermoelastic Bresse system in a bounded domain, where the coupling is given through the first component of the Bresse model with the heat conduction of Gurtin-Pipkin type. Two kinds of coupling are considered; the first coupling is of order one with respect to space variable, and the second one is of order zero. We state the well-posedness and show the polynomial and strong stability of the systems for regular and weak solutions, respectively, where the polynomial decay rates depend on the smoothness of the initial data. Moreover, in case of coupling of order one, we prove the equivalence between the exponential stability and some new conditions on the parameters of the system. However, when the coupling is of order zero, we prove the non-exponential stability independently of the parameters of the system. Applications to the corresponding particular Timoshenko models are also given, where we prove that both couplings lead to the exponential stability if and only if some conditions on the parameters of the systems are satisfied, and both couplings guarantee the polynomial and strong stability for regular and weak solutions, respectively, independently of the parameters of the systems. The proof of the well-posedness result is based on the semigroups theory, whereas a combination of the energy method and the frequency domain approach is used for the proof of the stability results.

For the details, see the following paper:

A. Guesmia, Well-posedness and stability results for thermoelastic Bresse and Timoshenko type systems with Gurtin-Pipkin’s law through the vertical displacements, SeMa J., (2023), 1-49.


Jérôme Le Rousseau (Université Paris Nord)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 May 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :

Groupe de travail : auchy systems of type Rao-Nakra sandwich beam with frictional dampings or infinite memories: some Lq(R)-norm polynomial stability estimates (q[1,+])

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 6 June 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Aissa Guesmia (IECL) Résumé :

The objective of this work is to study the stability of two systems of type Rao-Nakra sandwich beam in the whole line R with a frictional damping or an infinite memory acting on the Euler-Bernoulli equation. When the speeds of propagation of the two wave equations are equal, we show that the solutions do not converge to zero when time goes to infinity. In the reverse situation, we prove some L2(R)-norm and L1(R)-norm decay estimates of solutions and theirs higher order derivatives with respect to the space variable. Thanks to interpolation inequalities and Carlson inequality, these L2(R)-norm and L1(R)-norm decay estimates lead to similar ones in the Lq(R)-norm, for any q[1,+]. In our both L2(R)-norm and L1(R)-norm decay estimates, we specify the decay rates in terms of the regularity of the initial data and the nature of the control. Applications to some Cauchy Timoshenko type systems will be also given. The proof is based on the energy method combined with the Fourier analysis (by using the transformation in the Fourier space and well chosen multipliers).

A part of these results was obtained in collaboration with Salim Messaoudi (University of Sharjah, UAE).

For the details, see the following papers:

A. Guesmia, Some Lq(R)-norm decay estimates (q[1,+]) for two Cauchy systems of type Rao-Nakra sandwich beam with a frictional damping or an infinite memory, J. Appl. Anal. Comp., 12 (2022), 2511-2540.
A. Guesmia, On the stability of a linear Cauchy Rao-Nakra sandwich beam under frictional dampings, Taiwanese J. Math., 27 (2023), 799-811.
A. Guesmia and S. Messaoudi, Some L2(R)-norm and L1(R)-norm decay estimates for Cauchy Timoshenko type systems with a frictional damping or an infinite memory, J. Math. Anal. Appl., 527 (2023), 127385.


Karol Bołbotowski (Université de Varsovie)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Karol Bołbotowski (Université de Varsovie) Résumé :

Viet Dang Nguyen (Université de Strasbourg)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Viet Dang Nguyen (Université de Strasbourg) Résumé :

Xavier Lamy (Université de Toulouse)

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 June 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Xavier Lamy (Université de Toulouse) Résumé :

Past presentations

Optimisation d'une chimiothérapie pour empêcher l'émergence de résistance dans une tumeur hétérogène

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 April 2019 10:45-11:45 Lieu : Oratrice ou orateur : Cécile Carrère Résumé :

La résistance aux traitements est une raison majeure d’échec des chimiothérapies contre le cancer. Afin d’étudier les effets de différents protocoles de traitement, l’équipe de M.Carré [Centre de Recherche en Oncologie et Oncopharmacologie, Aix-Marseille Université] a réalisé des séries d’expériences in vitro sur des cultures de cellules cancéreuses sensibles ou résistantes à  un certain médicament. Ces expériences ont mis en lumière l’intérêt des protocoles métronomiques, c’est à  dire de plus faibles doses de médicament données plus fréquemment, par rapport aux protocoles MTD (maximal tolerated dose) classiques. Pour comprendre et améliorer ces résultats, nous proposons avec G.Chapuisat [Institut de Mathématiques de Marseille, Aix-Marseille Université] une modélisation de ces expériences, et l’optimisation du traitement par différents outils mathématiques. Tout d’abord, une stratégie adaptative reposant sur l’analyse du modèle est définie. Ensuite, la théorie du contrôle optimal est utilisée pour proposer un nouveau protocole de traitement, qui a été testé sur les cultures de cellules. Enfin, avec H.Zidani, l’approche de la programmation dynamique est présentée pour répondre de manière plus pragmatique aux attentes médicales.


Inégalité spectrale pour le système de Stokes et coà»t de contrôle optimal

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 April 2019 09:15-10:15 Lieu : Oratrice ou orateur : Rémi Buffe Résumé :

Résumé


Talenti's Comparison Theorem Revisited

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 April 2019 10:45-11:45 Lieu : Oratrice ou orateur : Mark Ashbaugh Résumé :

We present some extensions of Talenti’s comparison theorem for solutions of Poisson’s equation on domains in Euclidean space under Dirichlet boundary conditions. We show how these results can be particularly useful in proving isoperimetric inequalities for eigenvalues.


Derivation of a cable equation for a model of myelinated axons

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 April 2019 11:00-12:00 Lieu : Oratrice ou orateur : Irina Pettersson Résumé :

We derive a one-dimensional cable model for the electrical potential propagation along an axon. Since the typical thickness of an axon is much smaller than its length, and the myelin sheath is distributed periodically along the neuron, we simplify the problem geometry to a thin cylinder with alternating myelinated and unmyelinated parts. Both the microstructure period and the cylinder thickness are assumed to be of order h, a small positive parameter. Assuming a nonzero conductivity of the myelin sheath, we find a critical scaling with respect to h which leads to the appearance of an additional potential in the homogenized nonlinear cable equation. This potential contains information about the geometry of the myelin sheath in the original three-dimensional model.


Mesures de Gibbs non-linéaires vues comme limites de champ moyen

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 2 April 2019 10:45-11:45 Lieu : Oratrice ou orateur : Nicolas Rougerie Résumé :

A certaines équations de Schrödinger non-linéaires (NLS), on peut associer une mesure de Gibbs invariante basée sur l’énergie correspondante. C’est l’ingrédient de base de l’approche euclidienne en théorie constructive des champs quantiques, ainsi que l’asymptote naturelle pour l’équation de la chaleur non-linéaire stochastique. Nous discuterons d’une certaine limite de champ moyen connectant ces mesures et les états d’équilibre du modèle quantique à  N corps sous-jacent. Plus spécifiquement, nous traiterons du cas le plus simple o๠une renormalisation est nécessaire pour la définition de la mesure de Gibbs: deux dimensions d’espace et interactions régulières. travail commun avec Mathieu Lewin (Paris-Dauphine) et Phan Thà nh Nam (LMU, Munich)


Autour des équations de Maxwell-Stefan

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 29 March 2019 11:00-12:00 Lieu : Oratrice ou orateur : Francesco Salvarani Résumé :

Les équations de Maxwell-Stefan décrivent le comportement d’un mélange gazeux dont l’effet prédominant est la diffusion. Dans cet exposé, nous montrerons les liens entre la diffusion Fickienne et la diffusion à  la Maxwell-Stefan. Ensuite nous considérerons le cas non isotherme et étudierons quelques propriétés mathématiques de ces équations, notamment l’existence et l’unicité de la solution.


Etude du système d'Euler bitempérature en physique des plasmas

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 March 2019 10:45-11:45 Lieu : Oratrice ou orateur : Stéphane Brull Résumé :

Cet exposé est dédié à  la modélisation et à  l’approximation   numérique du modèle d’Euler bitempérature dans le contexte de la   physique des plasmas. Ce système entre dans la catégorie des systèmes   hyperboliques non conservatifs dont l’étude est à  ce jour largement   incomprise tant du point de vue théorique que numérique. On introduit dans un premier temps un modèle cinétique sous-jacent   couplé aux équations de Poisson et d’Ampère. Le modèle bitempérature est alors obtenu par limite hydrodynamique   après un scaling ad-hoc. On présente ensuite différents schémas numériques pour approcher ce système. Nous détaillerons une première approche basée sur des schémas de type    cinétiques puis une seconde basée sur des schémas de relaxation de   type Suliciu. Enfin dans une dernière partie nous considèrerons une discrétisation   du modèle cinétique de type DVM. Le but est d’obtenir un schéma physiquement cohérent y compris dans la   limite fluide o๠on comparera ses résultats avec ceux des schémas précédents.


Prolongement unique pour l'équation de Schrödinger avec potentiel non borné : le théorème de Jerison et Kenig

Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 March 2019 09:15-10:15 Lieu : Oratrice ou orateur : David Dos Santos Ferreira Résumé :

Résumé


Formalisme quantique et systèmes en interactions répétées à  plusieurs températures

Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 8 March 2019 11:00-12:00 Lieu : Oratrice ou orateur : Jean-François Bougron Résumé :

A partir de notions bien connues de mécanique quantique, cet exposé présente une version simplifiée du formalisme quantique. Plus précisément, je rappellerai quelques fondamentaux au sujet de la fonction d’onde, des observables et de l’équation de Schrödinger et expliquerai comment on peut résoudre certains problèmes de physique quantique à  l’aide d’algèbre linéaire en dimension finie. Le second objectif de cet exposé est d’appliquer ce formalisme simplifié à  un problème particulier : la théorie de la réponse linéaire et les fluctuations entropiques des systèmes en interactions répétées. D’un point de vue physique, on peut se représenter un faisceau d’atomes dont les températures sont différentes. Ce faisceau traverse une cavité remplie d’un champ électromagnétique. En moyenne, ce champ absorbera l’énergie des atomes les plus chauds et en injectera aux atomes les plus froids. Dans ce contexte, on peut retrouver certains résultats bien connus de thermodynamique hors-équilibre sous une forme particulière, notamment la formule de Green-Kubo et les relations de réciprocité d’Onsager.


Comportement en temps long pour des EDP dissipatives avec une perturbation aléatoire très dégénérée

Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 March 2019 10:45-11:45 Lieu : Oratrice ou orateur : Vahagn Nersesyan Résumé :

Dans cet exposé, on s’intéressera aux méthodes du contrôle pour étudier l’ergodicité des EDP stochastiques. Sous certaines hypothèses génériques sur l’équation (satisfaites par les équations de Navier-Stokes et de Ginzburg-Landau), nous montrerons l’existence et l’unicité de la mesure invariante et la convergence à  vitesse exponentielle des solutions. Il s’agit d’un travail en commun avec S. Kuksin et A. Shirikyan.