Complex geometry seminar

Upcoming presentations

Curvature equations and stabilities of holomorphic vector bundles

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 December 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Scarpa Résumé :

A fundamental result in Complex Geometry is the Kobayashi-Hitchin correspondence, stating that a holomorphic vector bundle on a Kähler manifold is poly-stable (as defined by Mumford, Takemoto) if and only if it admits a Hermitian metric solving the Hermite-Einstein equation. It has now become clear that there exist many possible different stability notions for vector bundles, that are of great interest in Algebraic Geometry and String Theory. It is natural to wonder if these stabilities are also tied to the existence of Hermitian metrics with special curvature properties. In this talk, based on joint work with Julien Keller (arXiv:2405.03312[math.DG]), we will consider a class of “polynomial” equations for the curvature of rank 2 holomorphic vector bundles on compact projective surfaces, and a corresponding class of polynomial stability conditions for these bundles. We will then explain how each of these stability conditions is related to the existence of a Hermitian metric satisfying the corresponding equation. This refines and partially confirms a conjectural correspondence between Bridgeland stability conditions and PDEs on holomorphic vector bundles, formulated by Dervan, McCarthy, and Sektnan.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Abonnement iCal

Past presentations

Sous-varietes algebriquement coisotropes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 December 2022 15:15-16:15 Lieu : Oratrice ou orateur : Katia Amerik Résumé :

Soit X une variete lisse holomorphiquement symplectique, alors une
sous-variete coisotrope lisse Y de X est muni d’un feuilletage naturel
(le noyau de la restriction de la forme symplectique). On dit que Y
est algebriquement coisotrope si ce feuilletage est algebriquement
integrable,
c’est-a-dire tangent a une fibration. Par analogie avec nos resultats
en codimension une, nous posons la question si toute variete
algebriquement
coisotrope est, a un revetement fini pres, produit d’une sous-variete
lagrangienne avec un Z symplectique quelconque. Nous expliquons
certaines
reponses partielles (notamment c’est vrai lorsque X est abelienne).


Stabilité et métriques Kähler--Einstein sur des variétés à fibré anticanonique gros

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 December 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Reboulet Résumé :

Je présente une notion de configuration test et de stabilité (pour la fonctionnelle de Ding) pour des variétés dont le fibré anticanonique est gros, c’est-à-dire quand les sections des puissances de -K_X ont une croissance maximale, mais peuvent avoir des points-base. Pour ce faire, j’utilise le formalisme des espaces de Zariski-Riemann. J’explique ensuite comment cette notion de stabilité est liée à l’existence de métriques Kähler–Einstein singulières. Ces résultats sont basés sur un travail en commun avec Ruadhaí Dervan.


Séminaire Commun de Géométrie - Régularité C^1 pour les minimiseurs du problème de Griffith

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 5 December 2022 14:00-16:00 Lieu : Oratrice ou orateur : Antoine Lemenant Résumé :

Le problème de Griffith est un problème où l’on minimise la mesure de surface d’un certain “ensemble de discontinuité libre” qui intervient dans un modèle de propagation de fissure en élasticité linéarisée. Il s’agit d’une variante vectorielle de la célèbre fonctionnelle de Mumford-Shah, correspondant au cas scalaire et pour laquelle la régularité des minimiseurs est bien connue depuis les années 90. L’analogue vectoriel (Griffith) est beaucoup plus difficile à appréhender en raison de problèmes techniques que l’on tentera d’expliquer. Cependant, certains résultats partiels de régularité C^1 qui ont été obtenus récemment en collaboration avec Jean-François Babadjian (Paris-Saclay) et Flaviana Iurlano (Sorbone Université) en dimension 2, puis généralisés en dimension supérieure en collaboration avec Camille Labourie (Erlangen-Nuremberg). Le but final de l’exposé sera de présenter ces résultats récents. Avant cela, dans une première partie, nous présenterons un panorama rapide de la théorie de régularité classique en partant du problème de Plateau, puis en faisant le lien avec ce qui est connu (ou encore ouvert) sur Mumford-Shah, pour enfin aboutir à Griffith dans une seconde partie de l’exposé.


Feuilletages de codimension un dans les espaces homogènes

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 28 November 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vladimiro Benedetti Résumé :

Dans cet exposé on étudiera le feuilletages de codimension un sur certains espaces rationnels homogènes, et on se focalisera sur les espaces de modules de feuilletages en petit degré. L’exemple (historique) qui guidera l’exposé est celui de l’espace projectif: tous les feuilletages de degré minimale de l’espace projectif sont obtenus comme les fibres d’une application linéaire de P^n vers P^1. Ceci implique que l’espace de modules de tels feuilletages est isomorphe à une Grassmannienne. En utilisant des techniques équivariantes, on montrera qu’un résultat analogue est vrai pour une certaine classe de variétés homogènes dites Grassmanniennes cominuscules, qui inclut notamment les Grassmanniennes de droites et d’autres variétés plus exotiques (ou exceptionnelles). On mentionnera enfin certains indices que ces résultats peuvent être étendus au-délà des cas déjà mentionnés. Il s’agit d’un travail en commun avec Daniele Faenzi et Alan Muniz.


Plans d'homologie et variétés réelles 4 dimensionelles.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 21 November 2022 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rodolfo Aguilar Résumé :

Un plain d’homologie est une surface quasi-projective avec les mêmes groupes d’homologie que le plan affine complexe. Dans la première partie de l’exposé, on discutera certaines propriétés des plans d’homologie. Dans la deuxième partie, une nouvelle connexion avec les variétés lisses réelles de dimension quatre sera mentionée. Cette dernière partie est travail en commun avec Oğuz Şavk.


Corps de Newton-Okounkov pour les courbes 

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 21 November 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucie Devey Résumé :

Le corps de Newton-Okounkov d’un diviseur gros D sur une varieté projective X est un convexe de R^n représentant le comportement asymptotique de l’ensemble des sections globales H^0(X,mD) quand m tend vers l’infini. Ainsi par exemple, le volume (dans R^n) du corps de Newton-Okounkov de D est n! fois le volume du diviseur D. Lehmann et Xiao ont défini des notions de volume pour les courbes duales de la notion de volume pour les diviseurs. En s’appuyant sur ce même papier, nous verrons qu’il est également possible de construire des corps de Newton-Okounkov pour les courbes de volume multiple du volume de la courbe initiale. Enfin, cette construction permet d’établir une nouvelle conjecture sur les corps de Newton-Okounkov.


Pavages des surfaces par des triangles ou des carrés, différentielles sur les surfaces de Riemann et variation de structure de Hodge

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 November 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Duc-Manh Nguyen Résumé :

Dans cet exposé nous expliquons d’abord comment associer
des couples (surfaces de Riemann, différentielles méromorphes)
aux pavages d’une surface topologique donnée par des triangles ou des
carrés. Cela nous permettra de ramener le problème de déterminer
l’asymptotique du nombre de tels pavages à des calculs de volumes de
certains espaces de modules. Nous verrons enfin comment les outils de
la géométrie analytique et algébrique complexe, notamment la variation
de la structure de Hodge, nous permettent d’obtenir des valeurs
exactes de ces volumes dans certains cas.


Compter les points rationnels sur les variétés avec un groupe fondamental grand

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 October 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marco Maculan Résumé :

D’après Faltings une courbe projective lisse de genre au moins 2 définie sur un corps de nombres K n’a qu’un nombre fini de points K-rationnels. Les courbes elliptiques peuvent avoir une infinité de tels points, ainsi que la droite projective ; par contre, elles en ont “beaucoup moins” que la droite projective. Dans un travail en commun avec Y. Brunebarbe, basé sur un résultat récent de Ellenberg-Lawrence-Venkatesh, nous démontrons un résultat analogue en dimension supérieure : les variétés projectives avec groupe fondamental grand (au sens de Kollár-Campana) ont “beaucoup moins” de points que les variétés de Fano.


Finite quotients of abelian varieties, étale in codimension 2, with a Calabi-Yau resolution

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 10 October 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Cécile Gachet Résumé :

Let A be an abelian variety and G be a finite group acting on
A. If G acts freely in codimension 1, then the quotient A/G has
numerically trivial canonical divisor. A natural question is then
whether A/G admits a crepant resolution: under the additional assumption
that G acts freely in codimension 2, such a crepant resolution X would
be remarkable Calabi-Yau manifold (as it would have a nef and big
divisor D such that c_2(X)\cdot D^{n-2} = 0). Classifying such
quotients, étale in codimension 2, that admit a simply-connected crepant
resolution, was implemented by Oguiso in dimension 3 in the 90ies. We
extend his results to dimension 4 and 5, and give partial results in
arbitrary dimension.


Séminaire commun de Géométrie

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 October 2022 14:00-16:00 Lieu : Oratrice ou orateur : Enrica Floris Résumé :

Espaces fibrés de Mori de dimension 4 et leur groupe d’automorphismes.

Dans cet exposé j’expliquerai la relation entre l’étude des espaces fibrés de Mori rationnels avec l’action d’un groupe et l’étude des sous-groupes maximaux connexes du groupe de Cremona.
Dans le cas d’un espace fibré de Mori f:X->B sur une courbe rationnelle B, je présenterai un résultat d’existence de fermés f-horizontaux invariants par l’action du groupe d’automorphismes de X ainsi que des exemples.

Il s’agit d’un travail en collaboration avec Jérémy Blanc.


2 3 4 5 6 7 8 9 10 11 12 13