Upcoming presentations
Curvature equations and stabilities of holomorphic vector bundles
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 16 December 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Carlo Scarpa Résumé :A fundamental result in Complex Geometry is the Kobayashi-Hitchin correspondence, stating that a holomorphic vector bundle on a Kähler manifold is poly-stable (as defined by Mumford, Takemoto) if and only if it admits a Hermitian metric solving the Hermite-Einstein equation. It has now become clear that there exist many possible different stability notions for vector bundles, that are of great interest in Algebraic Geometry and String Theory. It is natural to wonder if these stabilities are also tied to the existence of Hermitian metrics with special curvature properties. In this talk, based on joint work with Julien Keller (arXiv:2405.03312[math.DG]), we will consider a class of “polynomial” equations for the curvature of rank 2 holomorphic vector bundles on compact projective surfaces, and a corresponding class of polynomial stability conditions for these bundles. We will then explain how each of these stability conditions is related to the existence of a Hermitian metric satisfying the corresponding equation. This refines and partially confirms a conjectural correspondence between Bridgeland stability conditions and PDEs on holomorphic vector bundles, formulated by Dervan, McCarthy, and Sektnan.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentations
Séminaire commun de Géométrie - Construction de surfaces minimales : approche variationnelle
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 2 May 2022 14:00-16:00 Lieu : Oratrice ou orateur : Laurent Mazet Résumé :Comme tous les “Séminaires communs de géométrie”, cet exposé est constitué de deux parties, la première de 14h à 14h45 pour un large public, la seconde de 15h15 à 16h pour un public plus intéressé. Entre les deux, une pause “thé-gâteaux” est offerte par l’équipe de géométrie
Première partie : Construction de surfaces minimales : approche variationnelle.
Résumé : Après avoir expliqué ce que sont les surfaces minimales, je présenterai quelques éléments de l’approche variationnelle qui peut être utilisée pour en construire.
Partie spécialisée : Rigidité des variétés riemanniennes contenant un équateur
résumé : Si une métrique sur la sphère S^2 à courbure comprise entre 0 et 1 possède une géodésique de longueur 2\pi, alors la courbure est constante égale à 1. Ce résultat de rigidité est dû à Calabi. En dimension 3 et sous les mêmes hypothèses de courbure sectionnelle, l’existence d’une sphère minimale d’aire 4\pi rigidifie aussi la métrique. Ce résultat a été obtenu dans un travail précédent avec H. Rosenberg. Dans cet exposé je présenterai comment ce travail peut être généralisé en codimension supérieure. Je donnerai aussi comme conséquence un théorème de rigidité pour le “width” de Simon-Smith.
Le tore "tue" les nombres de Chern et c'est bien le seul !
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 April 2022 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Benoit Claudon Résumé :Dans un travail en commun avec Patrick Graf et Henri Guenancia, nous nous sommes intéressés à un analogue singulier du théorème de Yau qui affirme qu’une variété kählérienne compacte dont les 2 premières classes de Chern sont nulles admet un revêtement étale qui est un tore. Pour généraliser ce type de résultat au cas klt, nous établissons une version singulière de l’inégalité de Bogomolov–Gieseker. Nous nous appuyons également sur le théorème de décomposition pour les espaces kählériens Ricci plat obtenu par Bakker–Guenancia–Lehn.
Séminaire commun de Géométrie - Problèmes extrémaux en géométrie hyperbolique
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 April 2022 14:00-16:00 Lieu : Oratrice ou orateur : Bram Petri Résumé :Je parlerai d’un projet en commun avec Maxime Fortier Bourque sur des problèmes extrémaux en géométrie hyperbolique. Les problèmes qui nous intéressent sont des analogues hyperboliques de problèmes classiques en géométrie euclidienne, comme le problème de la densité maximale des empilements de sphères et le problème du nombre de contact. L’objectif de l’exposé sera d’expliquer comment on peut utiliser la formule de trace de Selberg – une formule qui relie les longueurs des géodésiques sur une variété hyperbolique au spectre du Laplacien de cette variété – pour attaquer ces problèmes.
%%%%%%%%%%%%%%%%%%%%%%
Comme chaque “séminaire commun de géométrie”, une première partie de 14h à 14h45 sera un exposé d’introduction au sujet de type colloquium, suivi d’une pause thé-gateaux de 14h45 à 15h15 et de la suite de l’exposé de 15h15 à 16h.
Raréfaction exponentielle des hypersurfaces algébriques réelles maximales
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 28 March 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Michele Ancona Résumé :Dans cet exposé, on étudiera les hypersurfaces algébriques réelles à l’intérieur d’une variété algébrique réelle donnée. On prouvera que les hypersurfaces algébriques réelles avec de très grands nombres de Betti (par exemple, les hypersurfaces maximales au sens de Smith-Thom) sont exponentiellement rares dans leur système linéaire.
Construction des variétés de Fano via l'inversion de Laurent
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 21 March 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Liana Heuberger Résumé :L’inversion de Laurent construit des déformations qui sont au centre de la symétrie miroir des variétés de Fano. Soit f un polynôme de Laurent dont le support est un polytope 3-dimensionnel P, auquel on associe une variété de Fano torique X_P. Dans le cas le plus général, l’inversion de Laurent construit un plongement de X_P dans une variété torique ambiante Y. Si en plus X_P est une intersection complète donnée par des fibrés en droites sur Y, alors une section générale de ces fibrés est une variété de Fano X dont X_P est une dégénérescence torique. Le but est de trouver un Y tel que X soit le plus lisse possible – dans cet exposé on s’intéresse aux variétés de dimension trois, terminales et Q-factorielles. Cette technique permet de construire beaucoup d’exemples d’une façon très explicite et controlée, en exploitant la combinatoire pour obtenir des objets géométriques.
Engendrer le groupe de Cremona du plan par des involutions
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 14 March 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Julia Schneider Résumé :Ce travail concerne le groupe de Cremona du plan sur un corps parfait, c’est à dire le groupe des applications birationnelles du plan projectif qui sont définies sur ce corps. Nous prouvons que ce groupe est engendré par des involutions.
J’expliquerai la décomposition de telles applications en liens de Sarkisov (applications birationnelles simples entre des espaces fibrés simples) et comment cela donne un ensemble de générateurs du groupe de Cremona. Après, je les décomposerai en involutions, parmi lesquelles on peut mentionner les involutions Geiser et Bertini, et des réflexions d’un groupe orthogonal associé à un espace quadratique.
(Travail en collaboration avec Stéphane Lamy.)
Littelmann’s path model and Mirkovic-Vilonen polytopes
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 21 February 2022 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Bozec Résumé :On the one hand, the Littelmann’s path model is a combinatorial tool that describes the representation theory of any (symmetrizable) Kac-Moody Lie algebra, available since 1994. The paths in this model are piecewise linear paths in the finite dimensional real vector space spanned by the fundamental weights. But this vector space together with its affine hyperplanes arrangement is also the standard apartment of an object called the masure, introduced by Gaussent-Rousseau in 2008. The masure is playing the role of the Bruhat-Tits building in the Kac-Moody setting. On the other hand, in the finite dimensional setting, Mirkovic and Vilonen developed a geometric model of the aforementionned representations, by introducing subvarieties in the affine Grassmannian associated to a reductive group, first in 2000. Most of the algebraic information can be derived from the associated polytopes, and there is a bijection between paths and polytopes. In 2014, Baumann, Kamnitzer and Tingley defined the Mirkovic-Vilonen polytopes in the Kac-Moody setting using preprojective algebras. Our goal is to take advantage of the combinatoric/geometric nature of the masure to realize Mirkovic-Vilonen polytopes directly from Littelmann’s paths.
This is a joint work with Stéphane Gaussent.
Involutions du plan - Séminaire commun de Géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 7 February 2022 14:00-16:00 Lieu : Oratrice ou orateur : Susanna Zimmermann Résumé :Il est naturel de regarder des transformations birationnelles du plan, càd des isomorphismes des ouverts de Zariski du plan. Il y en a beaucoup qui sont des involutions et on peut se mettre à les classifier à conjugaison près. Sur le corps des nombres complexes une telle involution possède des courbes fixes rationnelles ou bien une unique courbe fixe irrationnelle. Dans ce dernier cas, les classes de conjugaison des involutions sont à bijection avec les classes d’isomorphismes des courbes fixes. Pas surprenant, ce n’est plus le cas sur le corps des nombres réels…
Je vais motiver la classification dans le cas complexe et ensuite je vais raconter ce qui est connu dans le cas réel.
Comme tous les “séminaires communs de géométrie”, nous aurons de 14h à 14h45 une introduction au sujet de niveau Colloquium, puis de 14h45 à 15h15 une pause thé-gateaux-géométrie, puis de 15h15 à 16h la suite de l’exposé de recherche.
Algebraicity of holomorphic maps to varieties with big representation of pi_1 (séminaire en ligne)
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 31 January 2022 14:00-15:00 Lieu : Salle de conférence virtuelle Oratrice ou orateur : Ruiran Sun Résumé :We show the following algebraicity result for a complex projective variety X with big representation of π1 into an almost simple algebraic group: There exists a proper subvariety Z ⊂ X such that for any algebraic curve C, any holomorphic map f : C → X with f(C) not contained in Z is induced from an algebraic morphism. As a corollary, we show that such varieties are pseudo-Brody hyperbolic.