Colloquium

Présentation

Le colloquium lorrain de mathématiques est l’évènement mensuel à destination de tous les membres du laboratoire. Il a lieu sur les sites de Metz et Nancy.

Les organisateurs sont Renata Bunoiu et Hervé Oyono Oyono pour Metz et Youness Lamzouri pour Nancy.

L’exposé est donné par une oratrice ou un orateur reconnu pour ses qualités scientifiques et sa capacité à s’exprimer devant un large public de mathématicien(ne)s. Cet exposé a lieu généralement le mardi à 16h30, il est précédé d’un thé pour tous les membres du laboratoire à 16h et se poursuit par un dîner en ville pour ceux qui le souhaitent.

Exposés à venir

Archives

Constructions récentes de groupes discrets simples

Catégorie d'évènement : Colloquium Date/heure : 10 mars 2009 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Bertrand Remy

Il s’agit d’expliquer les questions de base en rapport avec l’existence et la construction de groupes infinis, simples et de type fini (c’est-à-dire engendrés par une partie finie). C’est un problème naturel de théorie des groupes. Une remarque de départ est que, pour les groupes infinis de type fini, être simple et être linéaire (c’est- à-dire isomorphe à un groupe de matrices) sont des propriétés incompatibles.

Ceci force à travailler sur des groupes pour lesquels les techniques de groupes de matrices ou de groupes algébriques sont inopérantes (mais pas les intuitions !). On expliquera qu’une question plus délicate et plus intéressante est celle de la construction de groupes infinis simples qui soient de présentation finie (c’est-à-dire pouvant être définis par une famille finie de générateurs soumis à un nombre fini de relations).

On finira en expliquant une stratégie récente de construction, s’appuyant sur une analogie (forcément limitée) avec les réseaux des groupes de Lie; les groupes obtenus agissent sur le produit de deux arbres (M. Burger et Sh. Mozes, 2000). Cette approche, en gros, sert à démontrer la simplicité d’autres réseaux d’immeubles (ce dernier point est un travail en commun avec P.-E. Caprace, 2007).


Gödel et les fantasmes de l’antiformalisme.

Catégorie d'évènement : Colloquium Date/heure : 18 novembre 2008 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Daniel Lacombe

Dès sa publication, le théorème d’incomplétude de Gödel s’est acquis une vaste re- nommée, non seulement dans le milieu (fort restreint) des logiciens-mathématiciens, mais aussi dans une population beaucoup plus vaste : mathématiciens, philosophes, commentateurs et vulgarisateurs de toute espèce. Malheureusement, cette notoriété s’est accompagnée d’une foule d’erreurs et d’incompréhensions, tant du point de vue technique que du point de vue épistémologique général. On en donnera des exemples en essayant de leur trouver un fil conducteur.


La méthode de Charles Hermite en théorie des nombres transcendants

Catégorie d'évènement : Colloquium Date/heure : 25 mars 2008 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Michel Waldschmidt

Les méthodes de transcendance ont toutes leur fondement dans les travaux précurseurs de Charles Hermite en 1873, quand il a démontré la transcendance du nombre e. On connaissait alors depuis une trentaine d’années des exemples de nombres transcendants, grâce aux travaux de Joseph Liouville, mais ceux qu’il avait exhibés étaient artificiels, spécialement construits pour satisfaire des contraintes d’approximation diophantienne très strictes. La démonstration par Georg Cantor de l’existence de beaucoup de nombres transcendants était nettement moins explicite. Hermite est le premier à démontrer la transcendance d’une constante fondamentale de l’analyse. Sa démonstration allait être exploitée en 1881 par Ferdinand Lindemann, qui donnait ainsi la réponse définitive au problème de la quadrature du cercle.

Nous présentons quelques unes des idées du mémoire d’Hermite et nous montrons comment elles ont évolué depuis, permettant de résoudre un certain nombre de problèmes de transcendance – mais les questions ouvertes sont encore les plus nombreuses.


Groupes fondamentaux, étales et motiviques

Catégorie d'évènement : Colloquium Date/heure : 18 mars 2008 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Hélène Esnault

Le groupe fondamental est défini en topologie comme groupe de classes d’homotopie de lacets. Grothendieck a transporté cette notion en géométrie algébrique arithmétique en utilisant une dualité proche de la dualité de Tannaka. Il définit ainsi le groupe fondamental arithmétique d’un schéma. Si le schéma est le spectre d’un corps, c’est le groupe de Galois de ce corps. Deligne a utilisé la dualité de Tannaka pour définir son groupe fondamental motivique. Nous discutons quelques aspects et théorèmes récents concernant ces groupes fondamentaux, en particulier un (avec Marc Levine) établissant un parallèle frappant entre les constructions arithmétiques et motiviques.


Imagerie passive en sismologie

Catégorie d'évènement : Colloquium Date/heure : 22 janvier 2008 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Yves Colin de Verdière

La méthode d’imagerie passive en sismologie, développée notamment dans l’équipe de Michel Campillo au LGIT de Grenoble, utilise la corrélation du bruit sismique enregistré sur de longues durées dans un réseau de stations. Cette corrélation est li ́ee de fa ̧con simple `a la fonction de Green des ondes sismiques.


Entire minimal graphs in H x R and the construction of surjective harmonic diffeomorphisms from the complex plane C to the hyperbolic plane H

Catégorie d'évènement : Colloquium Date/heure : 27 février 2007 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Harold Rosenberg

A classical theorem of Bernstein states that the only entire minimal graph over the euclidean plane E of dimension 2, is a plane. A harmonic map from the unit disk H to the plane E, is a map whose coordinate functions are harmonic functions on the disk. In the 1950’s, Heinz gave a proof of Bernsteins’ theorem by first proving there is no harmonic diffeomorphism from H onto E.

We will discuss graphs over H that are minimal surfaces ( in HxR, where H has the hyperbolic metric ). When the graph is entire (defined over all of H), the vertical projection to H is a harmonic diffeomorphism of the graph onto H ; the notion of harmonicity depends on the hyperbolic metric.

We will show how to construct entire minimal graphs over H that are conformally the complex plane C. Then the vertical projection yields a harmonic diffeomorphism from C onto H. This settles (negatively) a conjecture of R Schoen, stating that no such harmonic diffeomorphism exists.


The Willmore functional (from the viewpoint of nonlinear analysis)

Catégorie d'évènement : Colloquium Date/heure : 7 novembre 2006 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Ernst Kuwert

For a surface in Euclidean space, the Willmore energy is given by integrating the squared mean curvature over the surface, and can be viewed intuitively as a bending energy. It is invariant under conformal transformations of space, which is beautiful from the viewpoint of geometry but poses difficulties in the analysis : sequences of surfaces with uniformly bounded energy may degenerate. We eventually present a bi-Lipschitz type estimate which allows to overcome the problem in relevant situations.


LIBER ACCUSATIONIS

Catégorie d'évènement : Colloquium Date/heure : 6 juin 2006 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Michael McQuillan

On pense très souvent que l’oeuvre mathématique de Grothendieck s’applique exclusivement à la géométrie algébrique. En dehors du fait que Grothendieck a probablement écrit plus en analyse fonctionnelle qu’en géométrie algébrique (bien qu’il ait dirigé plus de travaux en géométrie algébrique), une telle opinion ignore le caractère meta-géométrique de son oeuvre, et son applicabilité à n’importe quelle situation géométrique. Pour apercevoir ce qu’est la meta-géométrie, il est utile de regarder le film ”Matrix” (surtout le premier, les autres étant moins significatifs) et de comparer la mathématique à ”Matrix”, c’est-à-dire à un appareil pour tenir les mathématiciens en esclavage. Le but de l’exposé sera d’étendre cette comparaison non seulement pour comprendre mieux la pensée de Grothendieck, mais aussi pour exposer (à mes risques et périls) le complot de la mafia des anneaux (cf. les sentinelles dans le film) qui cherche a obscurcir cette pensée.


Compression of finite group actions and covariant dimension.

Catégorie d'évènement : Colloquium Date/heure : 30 mai 2006 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Hanspeter KRAFT

Let [latex]G[latex] be a finite group and [latex]V[latex] a [latex]G[latex]-variety, i.e. an irreducible algebraic variety with a regular action of [latex]G[latex]. A compression of [latex]V[latex] is a [latex]G[latex]-equivariant dominant morphism [latex]f : Vto X[latex] such that [latex]G[latex] acts faithfully on [latex]X[latex]. The basic questions are : (a) How much can one compress a given action ? (b) What are the incompressible [latex]G[latex]-varieties ?

We first discuss this concept from two rather different points of view : (i) Generic struc- ture of Galois-coverings and (ii) Equations for field extension. We then define the covariant dimension of [latex]G[latex] which measures how much a representation of [latex]G[latex] can be compressed. This has to be compared with the essential dimension of [latex]G[latex] which was introduced by Buehler and Reichstein in order to study the number of parameters of equations. Finally, we will give a short overview on known results, work out a few interesting examples and discuss some open questions. (This is mostly joint work with G.W. Schwarz.)


Méthodes géométriques en contrôle optimal. Applications à la mécanique spatiale

Catégorie d'évènement : Colloquium Date/heure : 9 mai 2006 16:30-17:30 Lieu : Oratrice ou orateur : Résumé :

Bernard Bonnard

L’objectif de cet exposé est de présenter les techniques de contrôle optimal dites géométriques, développées dans le cadre de projets en collaboration avec le CNES, sur deux problèmes de mécanique spatiale : le calcul de l’arc atmosphérique d’une navette spatiale et le problème de transfert orbital. Ces deux problèmes ayant été réactualisés avec le projet des lanceurs récupérables pour le premier, et la technologie de la propulsion faible pour le second. Dans les deux cas, on utilise le principe du maximum et des techniques de calcul de points conjugués, combinées avec des méthodes géométriques et numériques, pour évaluer la trajectoire optimale.

Pour le transfert orbital, on étudie les problèmes optimaux du temps minimal (le temps de transfert pouvant être de l’ordre d’une année) ou de la maximisation de la masse finale, dans le cadre de la poussée faible. On fait une étude géométrique du système qui permet de comprendre l’effet des directions de poussée. On présente des résultats théoriques et numériques pour calculer la loi optimale pour le transfert optimal vers l’orbite géostationnaire. Le problème moyenné est associé à un problème riemannien. Ce résultat permet de calculer numériquement les trajectoires optimales des problèmes initiaux, en appliquant une technique de continuation.

Pour le problème de rentrée atmosphérique, la situation est différente : il y a l’effet du frottement atmosphérique et la poussée est coupée, dans cette phase le contrôle étant la portance (la navette est un planeur). Par ailleurs la rentrée est rapide et il y des contraintes actives sur l’état, en particulier sur le flux thermique. Le critère est le facteur d’usure. Nos travaux ont permis de calculer la structure de la trajectoire optimale, évaluée ensuite numériquement avec une méthode de tir multiple, pour les conditions du cahier des charges du CNES.


5 6 7 8 9 10 11 12 13 14