Exposés à venir
Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 décembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Archives
Nonlocal elliptic equation and the fractional laplacian
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 septembre 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour Résumé :We survey interesting properties of some nonlocal operators that have no analogue for linear second order elliptic PDE.
Contrôle en temps petit des systèmes bilinéaires conservatifs en dimension finie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 mars 2025 09:15-10:15 Lieu : Oratrice ou orateur : Thomas Chambrion Résumé :On s’intéresse au temps nécessaire pour transférer un système quantique fermé de dimension finie d’un état initial vers une cible donnée. On fera le lien avec le contrôle en norme L^1 minimale pour de tels systèmes et on en déduira des stratégies efficaces pour les cas où les approximations riemanniennes usuelles sont inefficaces.
–
Dans le cadre des journées thématiques « Quantum Lo : mécanique quantique en Lorraine »
Preuve du "crack initiation" + comportement asymptotique au voisinage d'une fissure
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie / Antoine Lemenant Résumé :Ce deuxième exposé du groupe de travail se fera en 2 parties. Dans une première partie Camille L. exposera (les idées principales) de la preuve du théorème de A. Chambolle, A. Giacomini et M. Ponsiglione à propos de « l’initiation soudaine d’une fissure », et dans une deuxième partie, Antoine L. fera un court résumé d’un travail ancien en collaboration avec Antonin Chambolle et J-F Babadjian sur l’analyse asymptotique d’une solution d’EDP elliptique au voisinage d’une fissure non lisse (seulement rectifiable et connexe). Cette deuxième partie est en lien avec la notion « d’Energy release rate » évoqué par Camille L. dans son premier exposé, mais pourra être suivie de façon totalement indépendante du reste.
Evolution en temps des fissures
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 janvier 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :Applications harmoniques minimisantes avec ancrage tangentiel
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :Motivés par des expériences avec des gouttes de cristaux liquides nématiques, nous étudions les applications harmoniques qui apparaissent comme des minimiseurs de l’approximation à une constante de l’énergie d’Oseen-Frank avec une condition au bord tangentielle. Dans la première partie de l’exposé, nous étudions la régularité des minimiseurs proches de la frontière par une méthode d’extension-réflexion. Dans la deuxième partie, je présenterai quelques résultats concernant la symétrie des minimiseurs et la localisation des défauts qui peuvent survenir. L’exposé est basé sur un travail commun avec Lia Bronsard et Andrew Colinet.
Applications harmoniques minimisantes avec ancrage tangentiel
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 décembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dominik Stantejsky Résumé :Alexandre Munnier
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 novembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexandre Munnier Résumé :TBA
Alexandre Munnier
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 12 novembre 2024 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexandre Munnier Résumé :TBA
Transport of Gaussian measures under the flow of Hamiltonian PDEs: quasi-invariance and singularity
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 24 septembre 2024 09:15-10:15 Lieu : Salle Döblin Oratrice ou orateur : Leonardo Tolomeo (University of Edinburgh) Résumé :In this talk, we consider the Cauchy problem for the fractional NLS with cubic nonlinearity (FNLS), posed on the one-dimensional torus T, subject to initial data distributed according to a family of Gaussian measures.
We first discuss how the flow of Hamiltonian equations transports these Gaussian measures. When the transported measure is absolutely continuous with respect to the initial measure, we say that the initial measure is quasi-invariant.
In the high-dispersion regime, we exploit quasi-invariance to build a (unique) global flow for initial data with negative regularity, in a regime that cannot be replicated by the deterministic (pathwise) theory.
In the 0-dispersion regime, we discuss the limits of this approach, and exhibit a sharp transition from quasi-invariance to singularity, depending on the regularity of the initial measure.
This is based on joint works with J. Forlano (UCLA/University of Edinburgh) and with J. Coe (University of Edinburgh).
Valentin Schwinte - Autour de l'équation du plus bas niveau de Landau
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 19 mars 2024 09:15-10:15 Lieu : Oratrice ou orateur : Valentin Schwinte Résumé :Ce groupe de travail portera sur l’étude de l’équation du plus bas niveau de Landau (LLL). Cette équation Hamiltonienne décrit un état de la matière appelé condensat de Bose-Einstein, et possède notamment des applications en superconductivité et superfluidité. Nous nous intéresserons à la dynamique de cette équation, et démontrerons quelques propriétés de base : noyau intégral, symétries de l’équation, quantités conservées, existence et unicité. Ce sera l’occasion d’introduire l’espace de Bargmann-Fock sur lequel l’équation (LLL) est définie. Nous finirons en présentant des résultats portant sur une classe de solutions appelées onde-stationnaires, liées à la minimisation d’une fonctionnelle intégrale.