Exposés à venir
Exposés passés
Matrices aléatoires - Quelques aspects
6 février 2018 16:30-17:30 -Oratrice ou orateur :
Résumé :
Djalil Chafaï (Université Paris-Dauphine)

Résumé :
Cet exposé présente quelques aspects de l’étude de modèles de matrices aléatoires, notamment le comportement des valeurs propres en grande dimension. Un effort particulier est fait pour mettre en avant la structure et les méthodes, entre analyse, probabilités, et physique statistique.
Suites de Fibonacci aléatoires
16 janvier 2018 16:30-17:30 -Oratrice ou orateur :
Résumé :
Élise Janvresse (Université de Picardie)

Résumé : Il est bien connu que les suites de Fibonacci croissent exponentiellement vite. En 2000, Viswanath a introduit les suites de Fibonacci aléatoires, définies par la relation de récurrence suivante :
F(n+1)= F(n)±F(n-1)
où le signe + ou – est donné par une suite de tirages à pile ou face.
Nous nous intéresserons dans cet exposé à la croissance des suites de Fibonacci aléatoires et de leurs généralisations.
Élise Janvresse est une spécialiste de théorie ergodique et probabilités. Après s’être intéressée au comportement asymptotique des systèmes de particules, son spectre scientifique s’est élargi aux suites de Fibonacci aléatoires, loi de Benford, marches aléatoires sur la sphère et le groupe orthogonal, applications au traitement d’images cérébrales, suspensions de Poisson et systèmes dynamiques en mesure infinie parmi d’autres sujets.
Elle est aussi une excellente vulgarisatrice, auteure de plusieurs livres, exposés grand public et articles dans de nombreux magazines.
Inégalités de Strichartz
5 décembre 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Gilles Lebeau (Université de Nice)

Résumé de l’exposé. Dans l’article « Restriction of Fourier Transform to Quadratic Surfaces and Decay of Solutions of Wave Equations. Duke Math. Journal, 44, 1977 », R. Strichartz a introduit les inégalités qui portent son nom, pour résoudre certaines équations d’ondes non linéaires. Elles sont devenues un outil fondamental pour l’étude du problème de Cauchy pour les équations d’évolutions dispersives non linéaires (ondes, Schrödinger,…) et en analyse harmonique pour l’étude des estimations Lp des projecteurs spectraux. Nous présenterons ces inégalités, ainsi que des résultats récents (en collaboration avec R. Lascar, O. Ivanovici et F. Planchon) dans des domaines bornés, et certains problèmes ouverts.
De l'approche à l'équilibre thermodynamique : quels mécanismes dynamiques ?
21 novembre 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Stéphane de Bièvre
(Université de Lille)

Que les systèmes macroscopiques isolés tendent vers un état d’équilibre thermodynamique est une loi de base de la thermodynamique. Expliquer comment et pourquoi ceci se passe en termes de la dynamique sous-jacente des constituents de ces systèmes reste un problème difficile et largement ouvert et activement étudié. Après avoir posé le problème, je passerai en revue quelques résultats récents sur des systèmes modèle simples.
Microlocal methods for chaotic dynamics
7 novembre 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Maciej Zworski (University of California, Berkeley)

Maciej Zworski est un spécialiste des aspects mathématiques de la mécanique quantique. Il s’intéresse en particulier à la théorie de la diffusion (scattering) et à l’analyse micro-locale.
Résumé :
As a more recent application I will present a result obtained with Dyatlov: for compact surfaces with Anosov geodesic flows, Ruelle zeta function at 0 has a pole of multiplicity given by the Euler characteristic. In articular, the lengths spectrum (the set of the lenghts of closed geodesics) determines the genus.
Une variété hyperbolique qui fibre sur le cercle
20 juin 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Nicolas Bergeron

Résumé : En 1979 T. Jorgensen surprend les géomètres en construisant une variété hyperbolique de dimension 3 qui fibre sur le cercle. Trente trois ans plus tard I. Agol, répondant positivement à une question de W. Thurston et en se basant sur des travaux de D. Wise, démontre que toute variété hyperbolique de dimension 3 possède en fait un revêtement fini qui fibre sur le cercle.
Dans cet exposé je commencerai par construire une exemple explicite de variété hyperbolique de dimension 3 qui fibre sur le cercle, en suivant une idée de Thurston. La construction est élémentaire et peut être rendue complètement visuelle. L’exposé sera ainsi constitué d’une succession de petits films, réalisés avec Jos Leys. En commentant ces films j’essaierai d’expliquer comment certaines des idées derrière cette construction d’une variété hyperbolique fibrée sont à la base des travaux d’Agol et Wise.
L’exposé sera précédé du thé du laboratoire à 16h30 et pour ceux qui le souhaitent, il y aura un repas en ville (participation de 20€ par personne). Si vous souhaitez participer à ce repas, merci de me prévenir avant vendredi 16 à midi.
Simulation moléculaire et mathématiques
25 avril 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Tony Lelièvre
Résumé : La simulation moléculaire consiste à modéliser la matière à l’échelle des atomes. En utilisant ces modèles, on espère obtenir des simulations plus précises et plus prédictives, et ainsi avoir accès à une sorte de microscope numérique, permettant de scruter les phénomènes moléculaires à l’origine des propriétés macroscopiques. Les perspectives applicatives sont innombrables: prédiction des structures des protéines, conception de nouveaux médicaments ou de nouveaux matériaux, simulation de la dynamique des défauts dans un matériau, etc. La simulation moléculaire occupe aujourd’hui une place importante dans de nombreux domaines scientifiques (biologie, chimie, physique) au même titre que les développements théoriques et les expériences.
Malgré la formidable explosion de la puissance des ordinateurs, il reste difficile de simuler suffisamment d’atomes sur des temps suffisamment longs pour avoir accès à toutes les quantités d’intérêt. Les mathématiques jouent un rôle fondamental à la fois pour dériver rigoureusement des modèles réduits moins coûteux, et pour analyser et améliorer des algorithmes permettant de relever les défis posés par les différences d’échelles en temps et en espace entre le modèle atomique et notre monde macroscopique.
L’objectif de l’exposé sera de présenter les modèles utilisés en dynamique moléculaire ainsi que quelques questions mathématiques soulevées par leur simulation.
Biographie de l’auteur : Tony Lelièvre est chercheur en mathématiques appliquées, professeur à l’Ecole des Ponts ParisTech et à l’Ecole Polytechnique. Il est membre de l’équipe Matherials (INRIA Paris). Ses recherches portent principalement sur l’analyse mathématique de modèles pour les matériaux, et des méthodes numériques associées. Il coordonne le projet ERC MsMath sur la simulation moléculaire.
Shannon et la théorie de l’information
28 mars 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Olivier Rioul

Nous fêtions en 2016 le centenaire de la naissance de Claude Shannon, un mathématicien et ingénieur américain considéré comme le “père de l’Âge de l’information”. Son nom ne vous dit peut-être pas grand chose : Hollywood a glorifié d’autres héros scientifiques comme Alan Turing ou John Nash. Shannon, lui, a eu une vie rangée, modeste… et surtout ludique : adepte du monocycle et du jonglage, il s’est amusé à construire des machines plus ou moins loufoques. Dans le même temps, il a fait des avancées théoriques décisives dans des domaines aussi divers que les circuits logiques, la cryptographie, l’intelligence artificielle, l’investissement boursier, le wearable computing… et surtout, la théorie de l’information. Son article fondateur de 1948 rassemble tellement d’avancées fondamentales et de coups de génie que Shannon est aujourd’hui le héros de milliers de chercheurs, loué presque comme une divinité. On peut dire, sans exagérer, que c’est le mathématicien dont les théorèmes ont rendu possible le monde du numérique que nous connaissons aujourd’hui.
Dans cet exposé on décrit ses contributions les plus marquantes : le paradigme de Shannon; les modèles probabilistes des données; l’unité logarithmique d’information; les limites de performances; l’entropie, l’entropie relative et la définition mathématique de l’information; la technique du codage aléatoire; la formule de capacité. On va jusqu’à présenter les idées des démonstrations des premier et second théorèmes de Shannon avec des moyens élémentaires. Si le temps le permet, on abordera une preuve récente de l’inégalité de la puissance entropique dont Shannon a eu l’intuition géniale.
Biographie de l’orateur :
Olivier Rioul (PhD, HDR) est ingénieur général du Corps des Mines, professeur à Télécom ParisTech et à l’Ecole Polytechnique. Ses activités de recherche en mathématiques appliquées sont consacrées à diverses applications parfois non conventionnelles de la théorie de l’information, comme les inégalités en statistiques, la sécurité physique des systèmes embarqués et la psychologie expérimentale dans les interactions homme-machine. Il enseigne la théorie de l’information dans plusieurs grandes écoles depuis vingt ans et a publié un livre qui est devenu une référence française du domaine et sera bientôt réédité.
Voir aussi les sites http://centenaire-shannon.cnrs.fr et http://shannon100.com.
Optimisation topologique de structures et fabrication additive
7 février 2017 16:30-17:30 -Oratrice ou orateur :
Résumé :
Grégoire Allaire

Grégoire Allaire est un spécialiste d’analyse numérique et d’optimisation.
Percolation des domaines nodaux aléatoires
6 décembre 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
Damien Gayet

Damien Gayet est un géomètre qui s’intéresse à des questions de sous-variétés ou de sous-ensembles aléatoires reliés aux fonctions propres de l’opérateur de Laplace sur une variété riemannienne.
Colloquium: Josselin Garnier
29 novembre 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
Josselin Garnier

Josselin Garnier est un spécialiste de la propagation des ondes dans des milieux aléatoires. Ces travaux le mène à des applications aux techniques d’imagerie.
Laurent Schwartz et le colloque d’analyse harmonique Nancy 1947
14 juin 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
Anne-Sandrine Paumier
Le premier colloque international du CNRS en mathématiques organisé après la guerre est celui d’analyse harmonique de Nancy, en juin 1947. C’est lors de ce colloque que Schwartz va exposer pour la première fois ses distributions sphériques (aujourd’hui distributions tempérées). Cet article montre comment le colloque participe à la vie collective des mathématiques, et examine en quoi ce colloque en particulier témoigne du dynamisme des mathématiques à Nancy à cette date et est important pour les mathématiques et la carrière de Laurent Schwartz.
Panorama des processus SLE et dimension du "backbone"
10 mai 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
Christophe Garban
Je commencerai par un panorama des processus SLE. Ces processus ont été introduits en 1999 par Oded Schramm dans le but de décrire les interfaces qui apparaissent à la transition de phase de modèles bi-dimensionnels (comme par exemple la percolation ou le modèle d’Ising, modèles que j’introduirai au début de l’exposé). Ces processus peuvent être vus comme une généralisation probabiliste très naturelle d’un objet introduit dans les années 1920 par Karl Löwner pour répondre à la conjecture de Bieberbach. Après avoir motivé l’introduction de ces processus, j’expliquerai comment s’en servir pour identifier/calculer les dimensions fractales d’objets naturels (comme les grandes composantes connexes) qui apparaissent à la transition de phase des modèles bi- dimensionnels.
Modèles mathématiques de réaction-diffusion : anciens et nouveaux défis
19 avril 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
Michel Pierre

Dans son article pionnier sur la morphogénèse animale et végétale publié en 1952, Alan Turing remarqua que la prise en compte de diffusion spatiale dans un processus réactif stable pouvait paradoxalement le déstabiliser, mais du même coup enrichir considérablement son comportement et contribuer à expliquer la variété des motifs spatiaux observés dans la nature. Il s’avère que l’ajout de diffusion dans les modèles mathématiques de réaction- diffusion correspondants peut même générer des explosions en temps fini et cette fois mettre en cause leur validité. Leur analyse soulève des questions d’existence globale en temps et de comportement asymptotique qui sont encore largement ouvertes aujourd’hui et pertinentes pour bien d’autres applications. Nous présenterons les résultats connus et les défis restants.
Structures modérées en topologie, géométrie et théorie des nombres
15 mars 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
François Loeser

À l’origine, les structures modérées (géométrie o-minimale) ont constitué un cadre général permettant d’exclure certains objets »pathologiques » et de disposer d’un formalisme agréable et flexible dans lequel les objets ont des propriétés topologiques et géométriques raisonnables. Plus récemment elles ont permis d’effectuer des avancées spectaculaires en théorie des nombres. Nous présenterons un panorama général de ces questions, en mettant l’accent principal sur les structures réelles tout en mentionnant des progrès récents dans d’autres contextes comme celui de la géométrie non- archimédienne.
Séries de Dirichlet et fonctions zêtas à plusieurs variables
23 février 2016 16:30-17:30 -Oratrice ou orateur :
Résumé :
Driss Essouabri

Les fonctions zêta à une ou plusieurs variables sont des objets importants qui apparaissent naturellement dans plusieurs domaines des mathématiques : la théorie des nombres, la géométrie algébrique, la théorie des groupes, la physique mathématique, les systèmes dynamiques, l’informatique théorique, la théorie des graphes, les équations aux dérivées partielles, la géométrie fractale, etc. L’étude de ces fonctions est transversale à la subdivision traditionnelle en disciplines mathématiques : algèbre, analyse, topologie, géométrie, combinatoire qui sont toutes nécessaires pour les étudier.
Dans cet exposé, nous présenterons un aperçu général de ce sujet et des méthodes utilisées pour étudier plusieurs classes de séries de Dirichlet et fonctions zêtas à plusieurs variables. Nous donnerons en particulier plusieurs résultats les concernant (prolongement méromorphe, localisation des singularités, valeurs spéciales, etc.) Nous donnerons aussi quelques applications (en théorie des nombres, en géométrie arithmétique, en géométrie fractale, etc.) pour justifier l’étude de ces différentes classes.
Inégalités fonctionnelles optimales, diffusions non linéaires et brisure de symétrie
8 décembre 2015 16:30-17:30 -Oratrice ou orateur :
Résumé :
Jean Dolbeault

Par des méthodes variationnelles, il est possible de donner un critère optimal pour la brisure de symétrie dans une sous-famille des inégalités de Caffarelli-Kohn-Nirenberg. Le but de l’exposé est d’introduire ce résultat, obtenu récemment en collaboration avec Maria J. Esteban et Michael Loss.
La méthode permet de relier les résultats de rigidité pour des EDP elliptiques non-linéaires aux méthodes dites du « carré du champ » en théorie des semi-groupes, et repose sur l’utilisation de fonctionnelles d’entropies pour des équations de diffusion non-linéaires.
Le colloquium permettra donc de faire le lien entre différents points de vue, et de replacer les questions de symétrie et de brisure de symétrie dans un contexte plus large.
Sur le fibré en droites déterminant d'une famille Réelle d'opérateurs de Dirac sur une surface de Klein
24 novembre 2015 16:30-17:30 -Oratrice ou orateur :
Résumé :
Andreï Teleman
Une surface de Klein est une surface de Riemann [latex]Y[/latex] munie d’une involution anti-holomorphe [latex]iota[/latex]. Une surface de Klein est donc un espace Réel au sens de Atiyah. Dans la théorie classique (sans involution) on obtient facilement une famille d’opérateurs de Dirac sur [latex]Y[/latex] paramétrée par [latex]Pic^0(Y)[/latex], qui est un tore complexe de dimension (complexe) [latex]g(X)[/latex]. Cette famille d’opérateurs et son fibré en droites déterminant ont été étudiés intensivement dans le littérature. Dans le cas Réel (le cas d’une surface de Klein) l’involution fixée [latex]iota[/latex] sur [latex]Y[/latex] induit une involution anti-holomorphe [latex]hatiota[/latex] de [latex]Pic^0(Y)[/latex]. En plus, la famille d’opérateurs de Dirac considérée est, elle aussi, munie naturellement d’une structure Réelle. Il en résulte que le fibré déterminant (qui est un fibré holomorphe en droites sur [latex]Pic^0(X)[/latex]) va hériter une structure Réelle au sense de Atiyah.
Le lieu des points invariants dans l’espace total du fibré déterminant sera donc un fibré en droite réel (avec minuscule!) sur le lieu fixe [latex]Pic^0(Y)^{hatiota}[/latex] de [latex]Pic^0(Y)[/latex].
L’exposé va traiter un problème très naturel (mais difficile): déterminer explicitement la casse d’isomorphisme de ce fibré en droite réel, en particulier sa classe de Stiefel-Whitney [latex]w_1[/latex].
Ergodicité quantique
3 novembre 2015 16:30-17:30 -Oratrice ou orateur :
Résumé :
Nalini Anantharaman

Quand on parle d’ « ergodicité quantique », il s’agit d’habitude d’étudier les fonctions propres [latex](psi_n)[/latex] du laplacien sur une variété riemannienne compacte, dans la limite des grandes valeurs propres. On s’intéresse aux phénomènes de concentration, ou au contraire de délocalisation, de la suite de mesures de probabilités [latex] |psi_n(x)|^2 dx[/latex]
Après un survol de cette question, je parlerai de travaux récents avec Etienne Le Masson, où l’on essaie de transposer cette problématique à un cadre discret : le laplacien discret sur des graphes.
Random signs and he Riemann hypothesis
6 octobre 2015 16:30-17:30 -Oratrice ou orateur :
Résumé :
Adam Harper

I will talk a little about the Riemann Hypothesis, andhow it can be reformulated as a question about cancellation in the sum of the Mobius function, which only takes values 1, -1, and 0.
Then I will explain what is known and conjectured about the size of this sum, and try to describe the work of various authors on a random analogue of the problem.
There are connections with the Law of the Iterated Logarithm and with large values theory for Gaussian processes, which I will try to sketch.

