Seminars

The main seminars take place on Monday at the following times:

  • Seminar of differential geometry: 14 pm-15 pm
  • Complex geometry seminar: 15:30 pm -16:30 pm

The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.


Upcoming presentation

The BNS sets of fundamental groups of complex algebraic varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :

The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 December 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Past presentation

La fonction volume sur les variétés de caractères

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 October 2017 14:00-15:00 Lieu : Oratrice ou orateur : Antonin Guilloux Résumé :

Soit $M$ une variété de dimension 3 et $G$ son groupe fondamental. La recherche
d’éventuelles structures hyperboliques sur $M$ amène naturellement à  étudier l’espace
des représentations de $G$ dans SL(2,$mathbb C$) ou plutôt la variété des caractères
(espace des représentations modulo conjugaison).

On peut définir sur cette variété de caractère une fonction Volume, qui étend le
volume hyperbolique. Nous verrons comment l’étude des propriétés de cette
fonction renseigne sur la variété des caractères elle-même.


Dynamiques conformes de groupes de Lie simples en géométrie lorentzienne

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 2 October 2017 14:00-15:00 Lieu : Oratrice ou orateur : Vincent Pecastaing Résumé :

Un théorème de Zimmer des années 1980 assure qu’à  isomorphisme local près, SL(2,$mathbb R$) est le seul groupe de Lie simple et non-compact agissant isométriquement sur des variétés lorentziennes de volume fini. Peu après, Gromov caractérisait la géométrie des variétés sur lesquelles de telles dynamiques se produisent. Dans cet exposé, je m’intéresserai au problème analogue pour des actions conformes de groupes de Lie semi-simples. Une plus grande famille de groupes apparaît, et certains d’entre eux agissent sur de nombreuses variétés non-conformément équivalentes. Néanmoins, nous verrons que la géométrie locale est prescrite par l’existence d’un groupe simple non compact de transformations conformes. Ceci découlera d’une analyse de la dynamique de flots hyperboliques du groupe. J’expliquerai en quoi ceci a des implications sur la forme générale du groupe conforme d’une variété lorentzienne compacte.


Equations à  la Plucker pour le schéma de Hilbert.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 September 2017 15:30-16:30 Lieu : Oratrice ou orateur : Laurent Evain Résumé :

Les paramétrages des sous-objets linéaires de l’espace projectif sont bien compris : un espace linéaire est représenté par les déterminants maximaux d’un système d’équations, et ces déterminants satisfont des équations de degré deux, dites de Plà¼cker. On se propose d’étendre une telle représentation à  tous les sous-schémas algébriques de l’espace projectif et de définir des équations à  la Plà¼cker pour le schéma de Hilbert. La méthode repose sur une nouvelle présentation du schéma de Hilbert comme quotient d’une variété de représentation de carquois.


Locally compact groups: from examples to general theory

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 26 June 2017 14:00-15:00 Lieu : Oratrice ou orateur : Phillip Wesolek Résumé :

We first explore in details a wide variety of examples of locally compact groups which arise in algebra, geometry, and dynamics. In particular, we discuss Lie groups over the reals and over the p-adic numbers, automorphism groups of locally finite trees, and almost automorphism groups of rooted trees. We go on to survey the general theory of locally compact groups.


Géométrie des variétés horosphériques de Fano

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 June 2017 15:30-16:30 Lieu : Oratrice ou orateur : Nicolas Perrin Résumé :

B. Pasquier a décrit toutes les variétés horosphériques de Fano de nombre de Picard 1. Nous décrirons la géométrie de ces variétés et en particulier les propriétés de leurs courbes rationnelles, leur cohomologie et leur cohomologie quantique (travail en commun avec R. Gonzales, C. Pech et A. Samokhine) .


Compactifications magnifiques des immeubles de Bruhat-Tits

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 June 2017 15:30-16:30 Lieu : Oratrice ou orateur : Bertrand Rémy Résumé :

Nous ferons des rappels sur le thème de la compactification des immeubles des groupes semi-simples sur les corps locaux. Dans le cas d’un groupe déployé, on peut identifier de façon équivariante la compactification de Satake-Berkovich maximale de l’immeuble euclidien correspondant, avec la compactification obtenue en plongeant l’immeuble dans l’espace de Berkovich associé à  la compactification maximale du groupe. La relation entre les structures à  l’infini, l’une provenant des strates de la compactification magnifique et l’autre des immeubles de Bruhat-Tits des facteurs de Lévi, peut être décrite. C’est un travail en commun avec A. Thuillier et A. Werner.


Lemme de positivité et projectivité des espaces de modules de Bridgeland

Catégorie d'évènement : Groupe de travail Géométrie Date/heure : 6 June 2017 14:00-15:30 Lieu : Oratrice ou orateur : Arvid Perego Résumé :

Sur le groupe fondamental des surfaces de Hirzebruch attachées aux arrangement de droites

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 22 May 2017 15:30-16:30 Lieu : Oratrice ou orateur : Philippe Eyssidieux Résumé :

En faisant un petit calcul concret, on essaiera de convaincre l’audience que l’idée de considérer les orbifolds comme des champs n’est pas une lubie, mais apporte des outils pertinents, d’après arXiv:1611.09178.


Exposants de Lyapunov du mouvement brownien sur une variété kählérienne compacte.

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 April 2017 15:30-16:30 Lieu : Oratrice ou orateur : Jérémy Daniel Résumé :

Soit $E$ un fibré plat de rang $r$ au-dessus d’une variété kählérienne compacte. On peut définir le spectre de Lyapunov de $E$ : c’est un ensemble de $r$ exposants réels contrôlant la croissance des sections plates de E, le long de trajectoires browniennes.
J’expliquerai comment calculer ces exposants, en utilisant la notion de mesure harmonique sur un espace feuilleté. Je montrerai ensuite une inégalité reliant ces nombres aux degrés des sous-fibrés holomorphes de $E$, puis je discuterai du cas d’égalité.


Basmajian-type inequalities for maximal representations

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 April 2017 14:00-15:00 Lieu : Oratrice ou orateur : Beatrice Pozzetti Résumé :

An injective homomorphism of the fundamental group of an hyperbolic surface in the symplectic group Sp(2n,R) is a maximal representation if it maximizes the so-called Toledo invariant. Maximal representations form interesting and well studied components of the character variety generalizing the Teichm”uller space, that is encompassed in the case n=1. Basmajian’s equality allows to compute the length of the boundary of a hyperbolic surface in term of the lengths of the orthogeodesics: geodesic segments orthogonal to the boundary at both endpoints. In joint work with Federica Fanoni we provide a generalization of this result to the setting of maximal representations.”