Seminars

The main seminars take place on Monday at the following times:

  • Seminar of differential geometry: 14 pm-15 pm
  • Complex geometry seminar: 15:30 pm -16:30 pm

The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.


Upcoming presentation

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anthony Genevois Résumé :
Titre de la première partie : Une introduction à la théorie géométrique des groupes
Résumé : L’idée centrale de la théorie géométrique des groupes est que, si un groupe agit sur un espace métrique par isométries, alors il y a des chances pour que des connections profondes existent entre les propriétés algébriques du groupe et les propriétés géométriques de l’espace. Dans un premier temps, j’illustrerai cette idée à travers plusieurs exemples de géométries qui se sont avérées particulièrement utiles au fil des années. Ensuite, j’expliquerai comment cette perspective géométrique sur la théorie des groupes mène naturellement à la notion de quasi-isométrie. Après une discussion générale, je me dirigerai petit à petit vers une famille particulière d’espaces, celle des allumeurs de réverbères.

 

Titre de la seconde partie : Géométrie à grande échelle des allumeurs de réverbères
Résumé : Grossièrement, un graphe d’allumeurs de réverbères est un graphe qui encode les différents états possibles d’un allumeur qui se déplace sur un graphe X donné et qui allume ou éteint des réverbères situés aux sommets de X. Dans cet exposé, on s’intéressera à la question suivante : quand deux graphes d’allumeur de réverbères ont-ils la même géométrie à grande échelle ? Après une discussion générale, j’expliquerai comment des idées de topologie élémentaire, notamment la notion de point de coupure locale, permettent de répondre partiellement à cette question.

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

TBA

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 February 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :

Groupe de travail de Géométrie - Variétés kählériennes compactes uniréglées VIII

Catégorie d'évènement : Géométrie Date/heure : 20 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire géométrie complexe et groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robynn Corvelyn Résumé :

titres et résumés à venir


séminaire groupes algébriques et géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Luca Francone Résumé :

titres et résumés à venir


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire groupes algébriques et géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 April 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anis Zidani Résumé :

titres et résumés à venir


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :

Geometric methods in computational complexity


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 15 June 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Erwann Delay Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Past presentation

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Lifting non-normal globally F-split surfaces from positive characteristic to the Witt vectors

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 26 May 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Quentin Posva Résumé :

It is well-known that not every variety in positive characteristic can be lifted to characteristic 0. However, it is conjectured that lifts exist for varieties on which the Frobenius map splits globally—the so-called globally F-split varieties. Recently, Bernasconi, Brivio, Kawakami and Witaszek established the following strong version in two dimension two: globally F-split normal surfaces indeed lift, together with their minimal resolution morphism. From the point of view of the MMP, it is natural to extend this result  to non-normal surfaces that are globally F-split.

In this talk, I will report on a joint project with F. Bernasconi, where we extend this strong lifting statement to non-normal globally F-split CY surfaces. Our argument involves a precise understanding of CY surface pairs with non-empty boundary, and some equivariant MMP.


Negativity in the direct image of relative anti-canonical sheaf in families of Fano varieties

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 21 May 2025 14:00-15:00 Lieu : Salle 113 Oratrice ou orateur : Behrouz Taji Résumé :

It is well understood that positivity or negativity properties of canonical line bundle encode a significant amount of geometric data about the underlying projective variety. It is therefore unsruprising to expect that the same should be true for the relative canonical divisor of families of projective varieties. For families of varieties whose canonical divisor is ample (canonically polarized) or numerically trivial (Calabi-Yau), important positivity properties of the pushforward of the relative (pluri)canonical was discovered by Fujita, Kawamata, Kollár and Viehweg. Many fundamental results then followed as a consequence – from moduli theory of such varieties to birational geometry of base spaces of their degeneration. For families of Fano varieties however much less is known. In this talk I will discuss how one can complement some of these classical results in the Fano case. This is based on ongoing joint work with Sándor Kovács.


Inequalities of Miyaoka-type and Uniformisation for Varieties of intermediate Kodaira Dimension

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 May 2025 14:00-15:00 Lieu : Salle Döblin Oratrice ou orateur : Niklas Müller Résumé :

Let $X$ be a minimal complex projective variety. Over the past years, many similar inequalities between the Chern classes of $X$ have been obtained. Moreover, it is known precisely which varieties $X$ can achieve the equality. However, so far all results in this direction have focussed on the case where the numerical dimension of $X$ is either very small or very large. In this talk, I will present analogous inequalities for varieties of intermediate Kodaira dimension and I will present a characterisation of those varieties achieving the equality. This talk is partially based on joint work with Masataka Iwai and Shin-ichi Matsumura.


Anti-Iitaka inequality in positive characteristic

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 May 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marta Benozzo Résumé :

A guiding problem in algebraic geometry is the classification of varieties. In dimension 1, the main invariant for their classification is the genus. Similarly, in higher dimension we study positivity properties of the canonical divisor and a first measure of these is its Iitaka dimension.
A long-standing problem is how we can relate Iitaka dimensions in fibrations: the Iitaka conjectures. Recently, Chang proved an inequality for the Iitaka dimensions of the anticanonical divisors in fibrations over fields of characteristic 0. Both Iitaka’s conjecture and Chang’s theorem are known to fail in positive characteristic. However, in a joint work with Brivio and Chang, we prove that anti-Iitaka holds when the “arithmetic properties” of the anticanonical divisor are sufficiently good.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Matthieu Romagny Résumé :

Géométrie birationnelle des groupes algébriques en caractéristique p>0

(Première partie) Cet exposé portera sur l’étude des familles G ⟶ S de groupes algébriques paramétrées par des variétés algébriques S de caractéristique p>0. Je commencerai l’exposé en expliquant quelques conséquences, pour l’étude des groupes algébriques, de l’existence du morphisme de Frobenius. La géométrie birationnelle est l’étude des différents prolongements possibles d’une famille fixée paramétrée par les points d’un ouvert dense U de S. J’expliquerai la signification de cette étude birationnelle pour la connaissance de toutes les familles. Dans ce contexte, les éclatements de Néron (aussi appelés dilatations) sont l’outil clé pour fabriquer de nouveaux prolongements. Je les présenterai ainsi que quelques développements très récents.
(Deuxième partie) Je me concentrerai ensuite sur le cas des groupes finis et illustrerai les problèmes spécifiques à ce cas. J’introduirai l’espace de modules des prolongements d’une famille fixée, qui est une ind-variété. Enfin j’énoncerai un résultat d’existence de dilatations dans ce cadre.
L’exposé comportera de nombreux exemples.
Il s’agit de résultats obtenus en collaboration avec A. Mayeux et T. RIcharz, ainsi que de travaux d’Alice Bouillet.


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Constructing quotients of Cremona groups

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 28 April 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Julia Schneider Résumé :

The Cremona group of rank N over the field K is the group of birational transformations of the projective N-space that are defined over K. Cremona groups have been studied for a long time but especially the ones of rank 3 and higher remain mysterious, even over the complex numbers. Since 2019, we know that these have non-trivial normal subgroups, due to the construction of quotients by Blanc, Lamy and Zimmermann. In this talk, I will present the following result, obtained in joint work with Blanc and Yasinsky: “Let N be at least 4. Then any group (of cardinality at most the cardinality of the complex numbers) is a quotient of the complex Cremona group of rank N.” The proof uses the Sarkisov program from birational geometry, and Severi-Brauer surfaces from arithmetic geometry.


Propriétés holomorphes des quotients de la boule et exposant critique

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 31 March 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : William Sarem Résumé :

En 2020, Dey et Kapovich ont montré que le quotient de la boule par un sous-groupe discret et sans-torsion de PU(n,1) est une variété de Stein dès lors que le groupe est convexe-cocompact et que son exposant critique est inférieur à 2. Ils conjecturent que le résultat reste vrai sans l’hypothèse de convexe-cocompacité. Je décrirai des résultats qui impliquent que cette conjecture est vraie pour les groupes géométriquement finis de PU(n,1). J’expliquerai également pourquoi, comme prédit par une autre conjecture de Dey et Kapovich, les seuls quotients de la boule par des sous-groupes convexes-cocompacts d’exposant critique égal à 2 qui ne sont pas des variétés de Stein sont les quotients par un groupe Fuchsien complexe.


Surfaces minimales dans R4

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 24 March 2025 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marina Ville Résumé :

On a beaucoup étudié les surfaces minimales complètes de courbure totale finie de R3 mais beaucoup moins celles de R4. Je rappellerai les outils de base dans R4 et donnerai des exemples de plans minimaux. Puis je me concentrerai sur le cas des tores minimaux de courbure totale -8π avec un  seul bout. Le tore carré de Chen-Gackstatter est l’unique exemple d’un tel tore dans R3 mais dans R4  on peut construire des exemples sur tous les tores rectangulaires. Je discuterai la stratégie de preuve et j’indiquerai les questions restant ouvertes. C’est un travail en collaboration avec Marc Soret.


1 2 3 4 5 6 7 8 9 10 11 12