The main seminars take place on Monday at the following times:
- Seminar of differential geometry: 14 pm-15 pm
- Complex geometry seminar: 15:30 pm -16:30 pm
The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.
Upcoming presentation
The BNS sets of fundamental groups of complex algebraic varieties
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 25 November 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vasily Rogov Résumé :The BNS set of a finitely generated group $\Gamma$ is a certain canonical subset of the space of real additive characters on $\Gamma$. It is a subtle invariant of the group that naturally comes up in different questions of geometric and homological group theory. In the case when $\Gamma$ is the fundamental group of a compact Kähler manifold $X$, Thomas Delzant found a beautiful description of its BNS set in terms of holomorphic fibrations of $X$ over hyperbolic orbifold curves. Using it, he showed that if the fundamental group of a compact Kähler manifold is virtually solvable, it is in fact virtually nilpotent. I will explain the main ideas behind Delzant’s proof and how to generalise his theorems to the case when $X$ is a smooth complex quasi-projective variety. Time permitting, I will also discuss some applications and the case of quasi-Kähler manifolds.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 December 2024 14:00-16:00 Lieu : Oratrice ou orateur : Jean-René Chazottes Résumé :Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 December 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickaël Nahon Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 January 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Hsueh-Yung Lin Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 28 April 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 5 May 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 June 2025 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentation
Séminaire commun de géométrie
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 4 March 2024 14:00-16:00 Lieu : Oratrice ou orateur : Sébastien Boucksom Résumé :Métriques kählériennes canoniques et éclatements
L’existence de métriques kählériennes canoniques (Kähler-Einstein, à courbure scalaire constante, etc…) dans une classe de cohomologie donnée d’une variété kählérienne compacte admet une formulation variationnelle comme équation d’Euler-Lagrange de certaines fonctionnelles. Grâce aux travaux profonds de Darvas-Rubinstein et Chen-Cheng, on sait que de plus qu’elles admettent des points critiques (donc des métriques canoniques) ssi elles satisfont une condition de croissance linéaire. Après avoir passé en revue ces objets fondamentaux, j’expliquerai comment cette caractérisation permet de généraliser des travaux d’Arezzo-Pacard et Seyyedali-Szekelyhidi portant sur la stabilité de telles métriques par éclatement de la variété. Il s’agit d’un travail en collaboration avec Mattias Jonsson et Antonio Trusiani.
Surfaces presque-Fuchsiennes de variétés hyperboliques
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 19 February 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Samuel Bronstein Résumé :Une surface presque-fuchsienne est une surface minimale dans une variété hyperbolique, dont la seconde forme fondamentale est majorée par 1. Dans ce cas, elle est plongée et on peut identifier la variété hyperbolique ambiante avec le fibré normal à notre surface. Cela amène à l’étude des représentations presque-fuchsiennes de groupes de surfaces dans Isom(ℍn)\mathrm{Isom}(\mathbb H^n), qui admettent un disque presque-fuchsien équivariant. On discutera d’abord du cas de Isom(ℍ3)\mathrm{Isom}(\mathbb H^3), dans lequel les représentations presque-fuchsienne forment un voisinage connexe de l’ensemble des représentations fuchsiennes, et ensuite nous verrons un exemple dans ℍ4\mathbb H^4, pour lequel la variété hyperbolique quotient est un fibré en disques de degré 1 sur une surface.
Groupes des automorphismes des $\mathbb{P}^1$-fibrés sur les surfaces réglées
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 19 February 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pascal Fong Résumé :La classification des sous-groupes algébriques des groupes des transformations birationnelles a été initiée par l’Ecole Italienne de la géométrie algébrique. Enriques et Fano énoncent la liste des sous-groupes algébriques connexes maximaux de $\mathrm{Bir}(\mathbb{P}^3)$ sur le corps des nombres complexes. En utilisant des méthodes analytiques, Umemura fournit une preuve de leur classification. Plus récemment, par des techniques purement algébriques, Blanc, Fanelli, Terpereau reconstituent et généralisent la quasi-intégralité de cette preuve. Dans cet exposé, on classifie les couples $(X,\mathrm{Aut}^\circ(X))$ tels que $X$ est un espace fibré en $\mathbb{P}^1$ sur une surface réglée non rationnelle S et $\mathrm{Aut}^\circ(X)$ est un sous-groupe algébrique connexe maximal dans $\mathrm{Bir}(X/S)$.
Métriques critiques de fonctionnelles spectrales
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 12 February 2024 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : David Tewodrose Résumé :Je parlerai d’un travail en cours avec Romain Petrides de l’Université Paris Cité dans lequel nous proposons un cadre général permettant de déduire de façon systématique les propriétés géométriques de métriques critiques de fonctionnelles spectrales définies sur une variété compacte lisse donnée. Notre approche permet notamment d’étendre les travaux de Nadirashvili, El Soufi, Ilias, Petrides sur la maximisation des valeurs propres de l’opérateur de Laplace-Beltrami et ceux de Fraser, Schoen et Petrides sur les valeurs propres de Steklov. Nous utilisons de façon cruciale les outils d’analyse non-lisse développé par Clarke dans les années 1970. Je présenterai ces outils et expliquerai comment on les adapte au contexte des métriques critiques de fonctionnelles spectrales.
Fibrés de Fock et composantes de Hitchin
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 12 February 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alexander Thomas Résumé :L’étude des représentations d’un groupe fondamental d’une surface dans un groupe de Lie est décrite par la variété des caractères. Je présente une nouvelle approche, les fibrés de Fock, pour étudier les variétés des caractères. Malgré des similarités avec la théorie de Hodge nonabelienne, la différence cruciale est qu’aucune structure complexe est fixée sur la surface. Les fibrés de Fock sont étroitement liés aux structures complexes supérieures et mènent à un lien avec la composante de Hitchin. Travail en commun avec Georgios Kydonakis et Charlie Reid.
Généralisations des surfaces de Willmore en dimension 4
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 29 January 2024 15:30-16:30 Lieu : Oratrice ou orateur : Dorian Martino Résumé :Mondino-Nguyen ont montré en 2018 que l’énergie de Willmore est essentiellement la seule fonctionnelle, définit pour des surfaces fermées de l’espace euclidien de dimension 3, qui soit invariante par transformations conformes. Motivés par la correspondance AdS/CFT, diverses généralisations des surfaces de Willmore ont été étudiées pour des hypersurfaces fermées de l’espace euclidien de dimension 5. Cependant, le nombre de fonctionnelles invariantes conformes pour des variétés de dimension 4 est beaucoup plus important qu’en dimension 2. En particulier, cette diversité complique le choix d’une généralisation convenable.
En dimension 2, la dualité de Bryant est un outil important de l’étude des surfaces de Willmore. Elle permet d’exhiber une quartique holomorphe, de classifier les sphères Willmore, de construire l’équivalent des données d’Enneper-Weierstrass pour les surfaces minimales… Dans cette présentation, nous verrons qu’une généralisation de cette dualité en dimension 4 permet de mettre en exergue deux fonctionnelles invariantes conformes.
Sur la structure locale des champs analytiques.
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 29 January 2024 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Doan An-Khuong Résumé :Le but de cet exposé est d’introduire une question intéressante proposée par D. Rydh sur une version analytique de son théorème de type Luna qui dit qu’autour d’un point dont le stabilisateur est linéairement réductif, tout champ algébrique raisonnable est étale-localement équivalent à un champ de quotient. Après avoir formulé la version analytique, on la vérifie pour un (ou deux si le temps permet) espace(s) de modules classique(s): l’espace de Riemann (ou Teichmüller) de structures complexes, dont la version de champs analytiques a été récemment construite par L. Meersseman.
Séminaire de géométrie complexe
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 15 January 2024 14:00-15:00 Lieu : Oratrice ou orateur : Vladimir Lazić Résumé :Title: Rigid currents and birational geometry
Abstract: Rigid currents are closed positive currents whose cohomology class contains only one closed positive current. This notion originates (probably) from complex dynamics and has sporadically occured in different contexts. I will survey some of these, and then show how rigid currents occur when one studies the Abundance conjecture in birational geometry. This is joint work with Zhixin Xie.