Seminars

The main seminars take place on Monday at the following times:

  • Seminar of differential geometry: 14 pm-15 pm
  • Complex geometry seminar: 15:30 pm -16:30 pm

The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.


Upcoming presentation

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anthony Genevois Résumé :
Titre de la première partie : Une introduction à la théorie géométrique des groupes
Résumé : L’idée centrale de la théorie géométrique des groupes est que, si un groupe agit sur un espace métrique par isométries, alors il y a des chances pour que des connections profondes existent entre les propriétés algébriques du groupe et les propriétés géométriques de l’espace. Dans un premier temps, j’illustrerai cette idée à travers plusieurs exemples de géométries qui se sont avérées particulièrement utiles au fil des années. Ensuite, j’expliquerai comment cette perspective géométrique sur la théorie des groupes mène naturellement à la notion de quasi-isométrie. Après une discussion générale, je me dirigerai petit à petit vers une famille particulière d’espaces, celle des allumeurs de réverbères.

 

Titre de la seconde partie : Géométrie à grande échelle des allumeurs de réverbères
Résumé : Grossièrement, un graphe d’allumeurs de réverbères est un graphe qui encode les différents états possibles d’un allumeur qui se déplace sur un graphe X donné et qui allume ou éteint des réverbères situés aux sommets de X. Dans cet exposé, on s’intéressera à la question suivante : quand deux graphes d’allumeur de réverbères ont-ils la même géométrie à grande échelle ? Après une discussion générale, j’expliquerai comment des idées de topologie élémentaire, notamment la notion de point de coupure locale, permettent de répondre partiellement à cette question.

Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :

TBA

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 February 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :

Groupe de travail de Géométrie - Variétés kählériennes compactes uniréglées VIII

Catégorie d'évènement : Géométrie Date/heure : 20 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire géométrie complexe et groupes algébriques

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robynn Corvelyn Résumé :

titres et résumés à venir


séminaire groupes algébriques et géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Luca Francone Résumé :

titres et résumés à venir


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :

Séminaire groupes algébriques et géométrie complexe

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 April 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anis Zidani Résumé :

titres et résumés à venir


Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :

Geometric methods in computational complexity


Titre à préciser

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 15 June 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Erwann Delay Résumé :

Séminaire commun de géométrie

Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :

Past presentation

Rigidity and Monotonicity of the Hawking Energy on Hawking Surfaces

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 17 November 2025 15:30-16:30 Lieu : Oratrice ou orateur : Alejandro Penuela Diaz Résumé :

The Hawking energy is one of the simplest quasi-local energy definitions in general relativity. Despite its simplicity, the Hawking energy has faced challenges due to ambiguities when applied to general surfaces. In this talk, I will present recent results demonstrating that the Hawking energy exhibits key physical and mathematical properties—non-negativity, rigidity,
and monotonicity—when evaluated on a generalization of  area-constrained Willmore surfaces  (Hawking surfaces). In particular such properties hold for area-constrained Willmore surfaces on manifolds with nonnegative scalar curvature.  These results establish Hawking surfaces as a useful tool for evaluating the Hawking energy and reinforce its potential as a meaningful tool for understanding gravitational phenomena.


Uniformization of log Fano pairs and equality in the Miyaoka--Yau inequality

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 17 November 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Louis Dailly Résumé :

At the beginning of the 20th century, it was known that any compact connected, simply connected Riemann surface is biholomorphic to the projective line.
Subsequently, several characterizations of projective spaces were established. For instance, Siu and Yau stated that projective spaces are the only Kähler manifolds with positive holomorphic bisectional curvature, and Mori proved that they are the only projective manifolds that have an ample tangent bundle. In a different direction, projective spaces are the only Kähler–Einstein manifolds with a positive constant satisfying the equality in the Miyaoka–Yau inequality. This result originating from uniformization theory was generalized in the singular setting by Greb, Kebekus, Peternell and Druel, Guenancia, Păun. More precisely, they characterize singular quotients of $\mathbb{P}^n$ by finite groups acting freely in codimension 1. The aim of this talk is to discuss a generalization of Greb–Kebekus–Peternell’s result in order to characterize quotients of $\mathbb{P}^n$ by any group action.


Spectral properties of symmetrized AMV operators

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 10 November 2025 15:30-16:30 Lieu : Oratrice ou orateur : Manuel Dias Résumé :

The symmetrized Asymptotic Mean Value Laplacian \tilde{\Delta}, is obtained as limit of approximating integral operators \tilde{\Delta}_r, and is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that in the limit as r->0, as the operators eventually admit isolated eigenvalues defined via min-max procedure  on any compact uniformly locally doubling metric measure space. Then we prove L^2 and spectral convergence of \tilde{\Delta}_r to the Laplace-Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.


Groupes d'automorphismes des surfaces del Pezzo de degré 5

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 10 November 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Aurore Boitrel Résumé :
Les surfaces del Pezzo et leurs groupes d’automorphismes jouent un rôle clé dans la classification, à conjugaison près, des sous-groupes du groupe de Cremona du plan projectif. Sur un corps algébriquement clos, elles sont complètement classifiées, de même que le sont leurs groupes d’automorphismes. En particulier, il existe une unique classe d’isomorphismes de surfaces del Pezzo de degré 5 sur un corps algébriquement clos. Nous nous intéresserons dans cet exposé aux surfaces del Pezzo de degré 5 définies sur un corps parfait, auquel cas il existe beaucoup de surfaces supplémentaires. Nous expliquerons comment l’étude de l’action du groupe de Galois sur le graphe des (-1)-courbes nous permet de donner une description par générateurs de leurs groupes d’automorphismes en termes d’automorphismes et de transformations birationnelles.

Groupe de travail de géométrie - Variétés kählériennes compactes uniréglées III

Catégorie d'évènement : Géométrie Date/heure : 24 October 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Frédéric Campana Résumé :

Morse index stability for Yang-Mills connections

Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 20 October 2025 15:30-16:30 Lieu : Oratrice ou orateur : Mario Gauvrit Résumé :

We investigate the stability of the Morse index for a sequence of Yang–Mills connections on closed 4-manifolds under bubble-tree convergence. As critical points of a conformally invariant energy, Yang–Mills connections share close ties with harmonic maps in various respects. At the same time, their analysis is simpler provided one works in a suitable gauge, namely the Coulomb gauge. Motivated by applications to the construction of non-stable solutions of the Yang–Mills equations, this work extends recent methods developed by Da Lio–Gianocca–Rivière for index stability to the Yang–Mills framework, employing sharp decay estimates to show that the neck regions contribute positively to the second variation.


Revêtements Galoisiens rationnels entre variétés Calabi-Yau

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 October 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matteo Verni Résumé :

Entre variétés à canonique trivial de la même dimension il y a très peu de morphismes dominants, car ils ne peuvent pas ramifier. Par contre, il y a beaucoup d’applications rationnelles dominantes. Parmi elles, celles qui sont Galoisiennes sont les plus géométriques, car elles permettent de voir le codomaine comme un quotient du domaine par un groupe fini (à birationalités près). Nous allons examiner quelles sont les restrictions que la géométrie d’une variété projective lisse avec canonique trivial impose sur ses revêtements rationnels Galoisiens. On applique ces restrictions aux variétés hyperkählériennes pour comprendre lesquelles peuvent être obtenues comme quotients birationnels d’un groupe fini agissant sur une autre variété à canonique trivial, ce qui donne des restrictions à des questions de Alexeev et Laza.


Groupe de travail de géométrie - Variétés kählériennes compactes uniréglées II

Catégorie d'évènement : Géométrie Date/heure : 17 October 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bastien Philippe Résumé :

Feuilletages de Calabi-Yau et déformations

Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 October 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Rémi Danain-Bertoncini Résumé :
En théorie des déformations, il est d’usage de chercher à construire, pour un objet géométrique donné, une famille représentant toutes ses petites déformations et ce de la manière la plus économique. Kodaira et Spencer, ayant développé la théorie des déformations de diverses structures géométriques, ont par exemple obtenu, pour toute variété complexe compacte $X$ telle que $H^2(X,TX)=0$, l’existence d’une telle famille paramétrée par un espace analytique régulier (une variété complexe). Kuranishi, parvient lui à démontrer pour toute variété complexe compacte, l’existence d’une telle famille, cette fois paramétrée par un espace analytique a priori singulier. Ce résultat motive l’étude de la régularité de l’espace de paramètre. Le théorème de Bogomolov-Tian-Todorov permet d’exhiber une classe particulière de variétés complexes compactes admettant une famille de déformation comme précédemment paramétrée par un espace analytique régulier : les variétés de Calabi-Yau.
Je présenterai au cours de mon exposé comment la théorie des déformations des variétés complexes s’adapte aux feuilletages holomorphes réguliers. J’introduirai ensuite une notion particulière de feuilletages holomorphes, inspirée de la propriété de Calabi-Yau des variétés complexes, pour obtenir un résultat du type Bogomolov-Tian-Todorov pour les feuilletages de Calabi-Yau.

Groupe de travail de géométrie - Variétés kählériennes compactes uniréglées

Catégorie d'évènement : Géométrie Date/heure : 10 October 2025 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :
1 2 3 4 5 6 7 8 9 10 11 12