The main seminars take place on Monday at the following times:
- Seminar of differential geometry: 14 pm-15 pm
- Complex geometry seminar: 15:30 pm -16:30 pm
The persons in charge are Damian Brotbeck for complex geometry and Benoit Daniel for differential geometry.
Upcoming presentation
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anthony Genevois Résumé :
Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 9 February 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurent Hauswirth Résumé :TBA
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 16 February 2026 15:30-16:30 Lieu : Oratrice ou orateur : Maxence Phalempin Résumé :Groupe de travail de Géométrie - Variétés kählériennes compactes uniréglées VIII
Catégorie d'évènement : Géométrie Date/heure : 20 February 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 2 March 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire géométrie complexe et groupes algébriques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 9 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Robynn Corvelyn Résumé :titres et résumés à venir
séminaire groupes algébriques et géométrie complexe
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 30 March 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Luca Francone Résumé :titres et résumés à venir
Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 30 March 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Hiba Bibi Résumé :Séminaire groupes algébriques et géométrie complexe
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 April 2026 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Anis Zidani Résumé :titres et résumés à venir
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 4 May 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 1 June 2026 14:00-16:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Fulvio Gesmondo Résumé :Geometric methods in computational complexity
Titre à préciser
Catégorie d'évènement : Séminaire de géométrie différentielle Date/heure : 15 June 2026 15:30-16:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Erwann Delay Résumé :Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 6 July 2026 14:00-16:00 Lieu : Oratrice ou orateur : Résumé :Past presentation
Deformation of Varieties with Big Fundamental Groups
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 March 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ya Deng Résumé :Two decades ago, Katzarkov et al. conjectured that a small deformation of a projective variety with big fundamental group still has big $ \pi_1 $. This conjecture was previously known only for surfaces and in some partial cases for threefolds due to Claudon. Recently, in joint work with Mese and Wang, we proved this conjecture when $ \pi_1 $ is linear. In this talk, I will outline the main ideas of the proof and discuss related results on Campana’s broader conjecture concerning the deformation invariance of $ \Gamma $-dimension.
Résultats de finitude pour des paires orbifoldes hyperboliques
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 10 March 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laurine Weibel Résumé :En 1913, De Franchis a démontré que le nombre d’applications holomorphes surjectives de $X$ vers $Y$ est fini lorsque $X$ et $Y$ sont des surfaces de Riemann compactes et que $Y$ est de genre au moins 2.
Ce résultat a été généralisé en dimension supérieure par Noguchi pour certaines variétés hyperboliques et Campana a établi un énoncé analogue pour les courbes orbifoldes hyperboliques.
Dans cet exposé, nous introduirons différentes notions liées à l’hyperbolicité et aux orbifoldes, afin de comprendre certaines propriétés de finitude pour les applications holomorphes entre variétés hyperboliques ou entre paires orbifoldes hyperboliques, généralisant ainsi le théorème de De Franchis.
Séminaire commun de géométrie - cohomologie galoisienne et conjecture de Serre II
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 3 March 2025 14:00-16:00 Lieu : Oratrice ou orateur : Diego Izquierdo Résumé :Théorèmes de transfert pour la cohomologie galoisienne et conjecture de Serre II
La première partie de l’exposé sera consacrée à une présentation générale et accessible de la conjecture de Serre II, prédisant l’existence de points rationnels sur des torseurs sous certains groupes linéaires quand on travaille sur des corps de petite dimension cohomologique.
Dans la deuxième partie, je parlerai d’un travail récent avec Giancarlo Lucchini Arteche dans lequel on démontre notamment que la conjecture pour les corps de caractéristique nulle implique la conjecture pour les corps de caractéristique quelconque. Ce résultat repose notamment sur quelques théorèmes de transfert pour la dimension cohomologique des corps que j’énoncerai et expliquerai.
Divisorial elementary Mori contractions of maximal length
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 24 February 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Bruno Dewer Résumé :An elementary Mori contraction from a smooth variety $X$ is a morphism with connected fibres onto a normal variety which contracts a single extremal ray of $K_X$-negative curves. Thanks to a result by P. Ionescu and J. Wisniewsi, we know that the length of such a contraction (i.e. the minimal degree $-K_X$ can have on contracted rational curves) is bounded from above. In a paper which dates back to 2013, A. Höring and C. Novelli studied elementary Mori contractions of maximal length, that is, elementary Mori contractions for which the upper bound is met. Their main result exhibits the structure of a projective bundle for the locus of positive-dimensional fibres up to a birational modification. In my talk, I will move to the submaximal case, in other words the case where the length equals its upper bound minus one, and focus on the divisorial case.
Variétés de Fano supérieures
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 10 February 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Enrica Mazzon Résumé :Les variétés de Fano sont des variétés projectives complexes avec premier caractère de Chern positif. Cette condition de positivité a des implications profondes en géométrie et en arithmétique. Par exemple, les variétés de Fano sont recouvertes par des courbes rationnelles , et les familles de variétés de Fano sur des bases unidimensionnelles admettent toujours des sections holomorphes. Ces dernières années, il y a eu un effort important pour définir des analogues supérieurs à la condition de Fano, qui devraient présenter des versions renforcées de propriétés des variétés de Fano. Dans cet exposé, je parlerai donc des “variétés de Fano supérieures” définies en termes de positivité des autres caractères de Chern. Ce travail est en collaboration avec Carolina Araujo, Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova et Nivedita Viswanathan.
Séminaire commun de géométrie
Catégorie d'évènement : Géométrie Date/heure : 3 February 2025 14:00-16:00 Lieu : Oratrice ou orateur : Stefan Kebekus Résumé :Extension of Differential Forms, Uniformization, Miyaoka-Yau inequalities and the topological characterization of certain klt varieties (with Daniel Greb and Thomas Peternell)
The first part of this overview talk begins with a non-technical overview of minimal model theory, explaining why any classification theory of complex-projective manifolds always needs to consider singular varieties. The talk describes the relevant singularities in brief, mentions methods that have been developed to study them and will ideally convey an idea what classification results one might hope to expect.
The second part describes some of the theory that has been developed over the last years and mentions some of the more concrete applications.
Characterization of rational varieties by their groups of birational transformations
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 27 January 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Christian Urech Résumé :To an algebraic variety X we associate its group of birational transformations Bir(X). In this talk, we will see the following theorem: If X is an algebraic variety such that Bir(X) is isomorphic to Bir(P^n), where P^n is the n-dimensional projective space, then X is birational to P^n. In other words, the group structure of Bir(X) determines whether X is rational or not. In another direction, I will explain that Borel subgroups of Bir(X), i.e. maximal connected solvable subgroups, are of derived length <= 2 dim(X) with equality if and only if X is rational and the Borel subgroup is standard. This is joint work with Regeta and Van Santen.
Classifying Fano 4-folds with a rational fibration onto a 3-fold
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 20 January 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Saverio Secci Résumé :In this talk I will present a joint work with C. Casagrande, in which we study smooth complex Fano 4-folds with a rational fibration onto a 3-fold. After an introduction on the setting and motivation, I will discuss our main result: if X is Fano 4-fold with a rational fibration onto a 3-fold and it is not a product of surfaces, then the Picard number of X is at most 9, and the bound is sharp. Moreover, I will present a classification result in a special case within the setting above, and show new examples of Fano 4-folds with large Picard number.
On the Holomorphic Convexity of Intermediate Coverings in Dimension Two
Catégorie d'évènement : Séminaire de géométrie complexe Date/heure : 13 January 2025 14:00-15:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Yuan Liu Résumé :The Shafarevich conjecture asks whether the universal covering of a compact Kähler manifold is holomorphically convex. In this work, we explore a similar question regarding the holomorphic convexity of intermediate coverings. We prove that if the intermediate covering of a compact Kähler surface admits a faithful reductive representation for its covering group and does not have two ends, then it is holomorphically convex. The main techniques employed include the analysis of the degeneracy loci of the Levi form and the properties of subanalytic functions.
Soutenance HDR Benoît Cadorel
Catégorie d'évènement : Géométrie Date/heure : 10 January 2025 14:00-17:00 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoît Cadorel Résumé :Damian Brotbek (IECL)
Simone Diverio (Sapienza Università di Roma)
Philippe Eyssidieux (Université Grenoble Alpes)
Mihai Păun (Universität Bayreuth, rapporteur)
Carlos Simpson (CNRS, Université Côte d’Azur, rapporteur)
Claire Voisin (CNRS, IMJ)
On présentera quelques approches à l’étude de cette conjecture pour diverses classes de variétés complexes, utilisant un spectre de techniques tant algébriques que transcendantes. Parmi les méthodes algébriques, on décrira notamment des techniques de construction d’équations différentielles de jets, très adaptées à l’étude de l’hyperbolicité des hypersurfaces de l’espace projectif. On présentera aussi quelques méthodes transcendantes applicables dans le cas quasi-projectif, notamment pour étudier les variétés admettant de “grosses” représentations du groupe fondamental. De façon peut-être un peu surprenante, ces dernières techniques — jointes à la théorie des orbifoldes et des variétés spéciales de Campana — trouvent une application à des problèmes d’uniformisation par la boule dans un cadre singulier ou quasi-projectif.
We will present several approaches to the study of this conjecture for several classes of complex varieties, using a spectrum of both algebraic and transcendental techniques. Among the algebraic methods, we will describe several techniques for constructing jet differential equations, well suited to the study of hyperbolicity of hypersurfaces in the projective spaces. We will also present several methods applicable in the quasi-projective setting, in particular to study the varieties admitting “big” representations of their fundamental group. Perhaps somewhat surprisingly, these last transcendental techniques — jointly with the theory of Campana’s special varieties and orbifolds — can be applied to problems of uniformization by the ball in a singular or quasi-projective setting.