Partial differential equations seminars in Metz and Nancy
The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy
During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).
Upcoming presentations
Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Ngoc Nhi Nguyen (Université de Milan)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 7 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Ngoc Nhi Nguyen (Université de Milan) Résumé :Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (1/2)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 10 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :Camille Labourie
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille Labourie Résumé :TBA
Idriss Mazari (Université Paris-Dauphine)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 14 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Idriss Mazari (Université Paris-Dauphine) Résumé :Groupe de Travail : Échelles dégénérées pour les potentiels de simple couche harmoniques et biharmoniques (2/2)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 17 January 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Alexandre Munnier Résumé :Raphaël Côte (Université de Strasbourg)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 28 January 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Raphaël Côte (Université de Strasbourg) Résumé :Groupe de Travail : Titre à venir (brouillon)
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 February 2025 10:45-12:15 Lieu : Salle de séminaires Metz Oratrice ou orateur : Tillmann Wunzbacher Résumé :Attention : horaires inhabituels, le séminaire aura lieu de 10h45 à 12h15 (une séance d’une heure et demie) et sera précédé d’une pause café-gâteau de 10h15 à 10h45
Didier Bresch (Université de Savoie)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 February 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Didier Bresch (Université de Savoie) Résumé :Pei Su (Université d'Orsay)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 11 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pei Su (Université d'Orsay) Résumé :Séminaire : Titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 14 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Antonio Gaudiello (Università della Campania “L. Vanvitelli”) Résumé :Pierre Rouchon (Mines Paris)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 18 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Pierre Rouchon (Mines Paris) Résumé :Séminaire : Titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 21 March 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Olivier Guibé (Université de Rouen) Résumé :Jérôme Le Rousseau (Université Paris Nord)
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 25 March 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérôme Le Rousseau (Université Paris Nord) Résumé :Journées EDP de l'IECL 2025
Catégorie d'évènement : Conférence Date/heure : 2 April 2025 - 4 April 2025 14:00-13:00 Lieu : DescriptionL’édition 2025 des Journées EDP de l’IECL aura lieu du mercredi 2 avril vers 14h au vendredi 4 avril vers 12h30.
Cette conférence aura lieu à Metz, à l’UFR MIM, campus du Technopole.
D’autres informations seront disponibles sur le page web de la conférence, accessible en cliquant sur ce lien.
Past presentations
Quand la théorie de la mesure rencontre celle de Fourier: le théorème de De Philippis et Rindler (Annals of math. 2016)
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 7 December 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Antoine Lemenant Résumé :Le but de l’exposé est de comprendre la preuve du théorème de De Philippis et Rindler (2016) qui redémontre et généralise dans un cadre beaucoup plus étendu le fameux théorème dit “Rang-1” d’Alberti (1993). Pour rappel, celui-ci stipule que toute mesure (à valeurs Matrices) qui est Curl-free doit avoir une partie singulière de rang-1, répondant en particulier à une question de De Giorgi et Ambrosio à propos des fonctions BV. De Philippis et Rindler ont récemment généralisé ce résultat en découvrant une nouvelle preuve assez astucieuse basée sur la théorie de Fourier, ayant d’autres applications intéressantes. Nous nous efforcerons de faire des rappels introductifs de manière à comprendre au mieux la preuve sans trop de pré-requis, ainsi que ses principales applications.
Les notes de l’exposé d’Antoine Lemenant sont disponibles sur sa page web, en suivant ce lien.
Solutions tores et splits du modèle Landau-de Gennes pour les cristaux liquides nématiques
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 30 November 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Vincent Millot (Université Paris-Est - Créteil Val-de-Marne) Résumé :Dans cet exposé, je présenterai le modèle tensoriel de Landau de Gennes pour les cristaux liquides nématiques dans le régime dit de Lyutsyukov faisant intervenir des applications à valeurs dans la sphère S4. Ce modèle décrit les configurations stables de cristaux liquides comme étant les minimiseurs d’une énergie de type Ginzburg-Landau dont le puit de potentiel est le plan projectif réel. Lorsque le domaine est une boule et la donnée de Dirichlet est à symétrie radiale (équivariante), on pourrait s’attendre à ce qu’un minimiseur soit également à symétrie radiale. De nombreuses simulations numériques montrent que ce n’est pas du tout le cas. Une certaine structure en tore apparaît. Une symétrie axiale semble toutefois préservée, et celle-ci a souvent été utilisée comme ansatz faisant alors apparaître d’autres solutions, singulières, appelées solutions splits. A l’aide de résultats de régularité sur ce modèle, j’essayerai d’expliquer l’existence et la géométrie de ces solutions tores et splits. Cet exposé est basé sur une série de travaux en collaboration avec Federico Dipasquale et Adriano Pisante.
Séminaire : Gradient-based method for PhotoAcoustic Imaging Sound-Heterogeneous Media
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 26 November 2021 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Zakaria Belhachmi Résumé :The standard approach for photoacoustic imaging with variable speed of sound is time reversal, which consists of solving a well-posed final-boundary value problem for the wave equation backwards in time. We present a gradient based approach which consists of the iterative Landweber regularization algorithm, where convergence is guaranteed by standard regularization theory, notably also in cases of trapping sound speed or for short measurement times.
We formulate and solve the direct and inverse problem on the whole Euclidean space, which is common in standard photoacoustic imaging, but not for time reversal algorithms, where the problems are considered on a domain enclosed by the measurement devices. We formulate both the direct and adjoint photoacoustic operator as the solution of an interior and an exterior differential equation which are coupled by transmission conditions. The former is solved numerically using a Galerkin scheme in space and finite difference discretization in time, while the latter consists of solving a boundary integral equation. We therefore use a boundary element method/finite element method approach for numerical solution of the forward operators.
We analyze this method, prove convergence, and provide numerical tests. Moreover, we compare the approach to time reversal.
Well-posedness and control of the Schrödinger equation by deformations of the domain
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 23 November 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Alessandro Duca (Laboratoire de Mathématiques de Versailles) Résumé :Séminaire : Ruled strips with asymptotically diverging twisting
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 November 2021 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Rafael Tiedra de Aldecoa Résumé :We consider the Dirichlet Laplacian in a two-dimensional strip composed of segments translated along a straight line with respect to a rotation angle with velocity diverging at infinity. We show that this model exhibits a “raise of dimension” at infinity leading to an essential spectrum determined by an asymptotic three-dimensional tube of annular cross section. If the cross section of the asymptotic tube is a disc, we also prove the existence of discrete eigenvalues below the essential spectrum. Joint work with David Krejcirik (Prague).
Lotka-Volterra competition-diffusion system: the critical competition case
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 November 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Dongyuan Xiao (Montpellier) Résumé :We consider the reaction-diffusion competition system
v_t=dv_{xx}+rv(1-v-u),$$
which is the so-called critical case. The associated ODE system then admits infinitely many equilibria, which makes the analysis quite intricate. We first prove the non-existence of monotone traveling waves by applying the phase plane analysis. Next, we study the long-time behavior of the solution of the Cauchy problem with a compactly supported initial datum. We not only reveal that the ”faster” species excludes the ”slower” species (with an identified ”spreading speed”), but also provide a sharp description of the profile of the solution, thus shedding light on a new ”bump phenomenon”.
Estimations de Strichartz pour l'équation de Schrödinger sur un domaine borné et applications
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 16 November 2021 09:45-10:30 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Robert Résumé :Les estimations de type Strichartz sont un outil fondamental dans l’étude des EDP dispersives, en particulier pour leur application dans l’étude de modèles non-linéaires. Après avoir rappelé brièvement comment obtenir ces estimations pour l’équation de Schrödinger sur l’espace Euclidien et leur utilité dans la résolution du problème de Cauchy pour une équation semi-linéaire, nous verrons comment traiter le cas d’un domaine compact, d’abord général puis les améliorations possibles dans le cas d’un tore. Si le temps le permet, nous montrerons également comment les estimations de Strichartz semi-classiques peuvent être utiles dans l’analyse de problèmes dispersifs quasi-linéaires.
Équation de Schrödinger logarithmique : dynamique en temps long, régime dispersif
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 November 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Guillaume Ferriere (IRMA, Université de Strasbourg) Résumé :Nous nous intéresserons dans cet exposé à l’équation de Schrödinger logarithmique (abrégé en logNLS), équation non-linéaire introduite en 1976 par Białynicki-Birula et Mycielski dans un modèle de mécanique des ondes linéaires en physique. Longtemps oublié par les mathématiciens, cette équation présente une dynamique originale, parfois surprenante comparée à celle des équations de Schrödinger non-linéaires usuellement étudiées, dont les non-linéarités sont régulières voire lisses (typiquement du type puissance). J’exposerai quelques propriétés de logNLS qui attestent de cette originalité, en me focalisant sur les résultats de comportement en temps long. En particulier, sera présenté plus en profondeur le cas du régime dispersif, dont la compréhension du comportement en temps grand est très avancée : la vitesse de dispersion est plus rapide d’un facteur logarithmique et le carré du module de la solution renormalisée converge faiblement dans L^1 vers une gaussienne universelle, ne dépendant pas des conditions initiales. Je montrerai que cette description peut être améliorée par une vitesse de convergence explicite et optimale en distance de Wasserstein-1 (aussi appelé métrique de Kantorovich-Rubinstein), indépendante de la constante semi-classique, et que cette convergence est également valable à la limite semi-classique.
Estimations de Strichartz pour l'équation de Schrödinger sur un domaine borné et applications
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 9 November 2021 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Tristan Robert Résumé :Les estimations de type Strichartz sont un outil fondamental dans l’étude des EDP dispersives, en particulier pour leur application dans l’étude de modèles non-linéaires. Après avoir rappelé brièvement comment obtenir ces estimations pour l’équation de Schrödinger sur l’espace Euclidien et leur utilité dans la résolution du problème de Cauchy pour une équation semi-linéaire, nous verrons comment traiter le cas d’un domaine compact, d’abord général puis les améliorations possibles dans le cas d’un tore. Si le temps le permet, nous montrerons également comment les estimations de Strichartz semi-classiques peuvent être utiles dans l’analyse de problèmes dispersifs quasi-linéaires.
Constructions variationnelles pour les équations quasi-géostrophiques de surface
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 19 October 2021 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Philippe Gravejat ( CY Cergy Paris Université) Résumé :L’équation quasi-géostrophique de surface est un modèle issu de la mécanique des fluides géophysiques qui présente de fortes similarités avec l’équation d’Euler incompressible. Le but de cet exposé est de décrire deux constructions variationnelles qui permettent d’obtenir des solutions particulières de cette équation sous la forme d’une paire de vortex en translation et sous celle d’un polygone régulier de vortex en rotation. Il s’agit d’un travail en collaboration avec Ludovic Godard-Cadillac (Université de Nantes) et Didier Smets (Sorbonne Université).