Partial differential equations seminars in Metz and Nancy
The seminars take place
– Fridays from 11am to 12pm, Seminar room, IECL Metz
– Tuesdays from 10:45 to 11:45 am, Conference room, IECL Nancy
During this period, until further notice, the seminars will take place in our virtual room on Zoom, at this link. The organizers of the seminars are : Jérémy Faupin (Metz), Julien Lequeurre (Metz), Julie Valein (Nancy) and Ilaria Lucardesi (Nancy).
Upcoming presentations
Séminaire: Convection-dominated transport problems in thin graph-like networks
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 5 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Taras Mel'nyk Résumé :The lecture addresses time‑dependent convection–diffusion problems with high Péclet number in thin 3D graph‑like networks of curvilinear cylinders connected by nodes of diameter $\mathcal{O}(\varepsilon).$ Inhomogeneous Robin boundary conditions with different intensity factors are imposed on the network boundary. As $\varepsilon \rightarrow 0,$ the network collapses to a graph and the diffusion terms vanish.
Such problems pose singular‑perturbation challenges that standard methods often cannot resolve. I present a systematic asymptotic framework for $\varepsilon \rightarrow 0,$ combining regular expansions on edges with node‑layer and boundary‑layer asymptotics to capture the multiscale flow structure. The analysis justifies reduced graph models, quantifies higher‑order corrections, and uncovers new phenomena in singular regimes.
Problème de contrôle optimal avec contraintes d’état en chimiothérapie anticancéreuse et optimisation du traitement
Catégorie d'évènement : Groupe de Travail Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 9 December 2025 09:15-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : David LASSOUNON Résumé :Le succès de la chimiothérapie dépend à la fois de la stratégie d’administration du médicament et de sa capacité à éliminer les cellules cancéreuses tout en préservant autant que possible les tissus sains. Dans cette présentation, nous nous intéresserons à un problème de contrôle optimal avec des contraintes d’état appliqué à la chimiothérapie des tumeurs invasives, où la dose de médicament agit comme variable de contrôle. Étant donné que le traitement affecte à la fois les cellules tumorales et les tissus sains, l’objectif du
problème de contrôle est de réduire la densité tumorale en contrôlant la dose du médicament. Pour ce faire, nous modélisons l’action thérapeutique à l’aide d’une équation de réaction-diffusion non linéaire décrivant l’évolution d’une tumeur invasive sous traitement. Nous commençons par analyser mathématiquement le problème initial de valeur limite. Nous formulons ensuite le problème de contrôle optimal sous contraintes et en déduisons les conditions nécessaires à l’optimalité. Enfin, à l’aide de simulations numériques en 2D pour un cas de cancer du sein, nous illustrons l’importance des contraintes d’état dans les stratégies de traitement optimales, avant de conclure par quelques perspectives
Régularité d'un problème à frontière libre d'ordre 4
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 16 December 2025 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Mickael Nahon Résumé :Je vais présenter un problème d’optimisation à frontière libre analogue au problème de Alt-Caffarelli pour les fonctions biharmoniques. Ce problème apparaît dans différentes questions d’optimisation de forme, dont la minimisation de la trainée d’un obstacle dans un fluide sous contrainte de mesure, la minimisation de la première valeur propre de l’opérateur de Stokes (ou de flambage) dans les domaines du plan, etc.. On s’attend à ce que la frontière libre obtenue soit généralement une union de courbes lisses, pouvant se rejoindre avec un angle d’environ 1.43pi, et je présenterai plusieurs résultats allant dans ce sens.
C’est un travail en collaboration avec Jimmy Lamboley.
Séminaire: titre à venir
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 19 December 2025 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Vincent Laheurte (Institut de Mathématiques de Bordeaux) Résumé :Résumé à venir
Romeo LEYLEKIAN
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 6 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Romeo LEYLEKIAN Résumé :Laure GIOVANGIGLI
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 13 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Laure GIOVANGIGLI Résumé :Lucas COEURET
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 20 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Lucas COEURET Résumé :Marc PEGON
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 27 January 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Marc PEGON Résumé :Nicolas VANSPRANGHE
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Nicolas VANSPRANGHE Résumé :Benoit MERLET
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 10 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Benoit MERLET Résumé :Camille LAURENT
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 17 February 2026 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Camille LAURENT Résumé :Past presentations
Intégration convexe et solutions anomales d'EDP
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 10 May 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reza Pakzad Résumé :On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).
On parabolic problems with superlinear gradient terms
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 3 May 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Martina Magliocca (Ecole normale supérieure Paris-Saclay) Résumé :Intégration convexe et solutions anomales d'EDP
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 3 May 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reza Pakzad Résumé :On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).
Inégalité de Faber-Krahn inverse pour le laplacien tronqué
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 26 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Enea Parini (Aix-Marseille Université) Résumé :Dans cet exposé on va s’intéresser à une inégalité de Faber-Krahn inverse pour la valeur propre fondamentale $\mu_1(\Omega)$ de l’opérateur complètement nonlinéaire
\[ \mathcal{P}_N^+ u := \lambda_N(D^2 u), \]
où $\Omega \subset \mathbb{R}^N$ est un ouvert borné et convexe, et $\lambda_N(D^2 u)$ est la plus grande valeur propre de la matrice hessienne de $u$. On verra que le résultat découle de l’inégalité isopérimétrique
\[ \mu_1(\Omega) \leq \frac{\pi^2}{\text{diam}(\Omega)^2}. \]
De plus, on va discuter de la minimisation de $\mu_1$ sous différents types de contraintes. Les résultats ont été obtenus en collaboration avec Julio D. Rossi et Ariel Salort (Buenos Aires).
Intégration convexe et solutions anomales d'EDP
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 26 April 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Reza Pakzad Résumé :On présente d’abord un ensemble de résultats concernant les équations d’Euler en mécanique des fluides, les immersions isométriques, et l’équation de Monge-Ampère au sens très faible. Le but est de souligner dans chaque cas la présence d’une dichotomie, dépendant de la régularité des solutions, de flexibilité (c.-à-d. l’existence et l’abondance de solutions dites anomales) et de rigidité (c.-à-d. les propriétés restrictives des solutions ). Ensuite, on décrit les structures sous-jacentes communes à ces EDP vues comme des problèmes d’inclusions différentielles, qui nous permettent d’utiliser les méthodes du théorème de Baire et de l’intégration convexe pour établir les résultats d’existence, où on fait valoir les aspects fondamentaux de ces méthodes. À titre d’exemple, on décrit comment prouver l’existence de solutions anormales très faibles de régularité de Lipschitz à l’équation de Monge-Ampère, et comment améliorer cette approche pour trouver des solutions C^{1,α} pour α < 1/5 ; (la valeur critique de α pour une telle construction reste un problème ouvert).
Adaptation d'un pathogène à plusieurs hôtes: The third man
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 5 April 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Matthieu Alfaro (Université de Rouen Normandie) Résumé :On considère un système de réaction-diffusion non locale décrivant l’adaptation d’un pathogène à $H$ hôtes, chacun étant associé à un différent optimum phénotypique dans $\mathbb R^n$. Le comportement en temps grand (persistance vs extinction) du problème de Cauchy associé est donné par le signe d’une valeur propre principale. Une grande partie de l’étude se concentre sur le cas $H=3$ (qui est très riche!). On compare notamment avec le cas $H=2$ et montre que la présence d’un troisième hôte peut favoriser ou entraver l’adaptation…
Journées EDP de l'IECL 2022
Catégorie d'évènement : Conférence Date/heure : 28 March 2022 - 30 March 2022 14:00-14:00 Lieu : DescriptionLes journées auront lieu du 28 au 30 mars 2022 à Nancy dans l’Amphi 7 (bâtiment Victor Grigard, site de la FST).
Vous trouverez plus d’informations en cliquant sur ce lien.
Séminaire : Phénomène de Lavrentiev en Calcul des Variations
Catégorie d'évènement : Séminaire EDP, Analyse et Applications (Metz) Date/heure : 25 March 2022 11:00-12:00 Lieu : Salle de séminaires Metz Oratrice ou orateur : Pierre Bousquet Résumé :Sur un ouvert $\Omega$ régulier, l’ensemble des fonctions lisses $C^{\infty}(\overline{\Omega})$ est dense dans les espaces de Sobolev $W^{1,p}(\Omega)$ (avec $1\leq p <\infty$). Pourtant, minimiser une fonctionnelle du calcul des variations sur $C^{\infty}(\overline{\Omega})$ ou sur $W^{1,p}(\Omega)$ peut conduire à des résultats différents: c’est le phénomène de Lavrentiev.
Il s’agit dans cet exposé d’identifier une large classe de fonctionnelles pour laquelle ce phénomène ne se produit pas. La preuve repose sur de nouvelles techniques d’approximation pour des versions paramétriques des problèmes variationnels considérés.
La méthode de Lyapunov pour des solutions de systèmes de Réaction-Diffusion
Catégorie d'évènement : Séminaire Équations aux Derivées Partielles et Applications (Nancy) Date/heure : 22 March 2022 10:45-11:45 Lieu : Salle de conférences Nancy Oratrice ou orateur : Said Benachour (IECL) Résumé :Quelques résultats sur l'équation de Hartree. Partie II : existence d'un état fondamental, cas général.
Catégorie d'évènement : Équations aux dérivées partielles Date/heure : 22 March 2022 09:15-10:15 Lieu : Salle de conférences Nancy Oratrice ou orateur : Jérémy Faupin Résumé :L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la deuxième partie on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie, dans un cadre général. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.